1
|
Sun S, Wang H, Fu B, Zhang H, Lou J, Wu L, Xu J. Non-bioavailability of extracellular 1-hydroxy-2-naphthoic acid restricts the mineralization of phenanthrene by Rhodococcus sp. WB9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135331. [PMID: 31831232 DOI: 10.1016/j.scitotenv.2019.135331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Rhodococcus sp. WB9, a strain isolated from polycyclic aromatic hydrocarbons contaminated soil, degraded phenanthrene (PHE, 100 mg L-1) completely within 4 days. 18 metabolites were identified during PHE degradation, including 5 different hydroxyphenanthrene compounds resulted from multiple routes of initial monooxygenase attack. Initial dioxygenation dominantly occurred on 3,4-C positions, followed by meta-cleavage to form 1-hydroxy-2-naphthoic acid (1H2N). More than 95.2% of 1H2N was transported to and kept in extracellular solution without further degradation. However, intracellular 1H2N was converted to 1,2-naphthalenediol that was branched to produce salicylate and phthalate. Furthermore, 131 genes in strain WB9 genome were related to aromatic hydrocarbons catabolism, including the gene coding for salicylate 1-monooxygenase that catalyzed the oxidation of 1H2N to 1,2-naphthalenediol, and complete gene sets for the transformation of salicylate and phthalate toward tricarboxylic acid (TCA) cycle. Metabolic and genomic analyses reveal that strain WB9 has the ability to metabolize intracellular 1H2N to TCA cycle intermediates, but the extracellular 1H2N can't enter the cells, restricting 1H2N bioavailability and PHE mineralization.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Binxin Fu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Steliga T, Wojtowicz K, Kapusta P, Brzeszcz J. Assessment of Biodegradation Efficiency of Polychlorinated Biphenyls (PCBs) and Petroleum Hydrocarbons (TPH) in Soil Using Three Individual Bacterial Strains and Their Mixed Culture. Molecules 2020; 25:E709. [PMID: 32041368 PMCID: PMC7036857 DOI: 10.3390/molecules25030709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/31/2023] Open
Abstract
Biodegradation is one of the most effective and profitable methods for the elimination of toxic polychlorinated biphenyls (PCBs) and total petroleum hydrocarbons (TPH) from the environment. In this study, aerobic degradation of the mentioned pollutants by bacterial strains Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN129, and Rhodococcus sp. IN306 and mixed culture M1 developed based on those strains at 1:1:1 ratio was analyzed. The effectiveness of individual strains and of the mixed culture was assessed based on carried out respirometric tests and chromatographic analyses. The Rhodococcus sp. IN306 turned out most effective in terms of 18 PCB congeners biodegradation (54.4%). The biodegradation index was decreasing with an increasing number of chlorine atoms in a molecule. Instead, the Mycolicobacterium frederiksbergense IN53 was the best TPH degrader (37.2%). In a sterile soil, contaminated with PCBs and TPH, the highest biodegradation effectiveness was obtained using inoculation with mixed culture M1, which allowed to reduce both the PCBs (51.8%) and TPH (34.6%) content. The PCBs and TPH biodegradation capacity of the defined mixed culture M1 was verified ex-situ with prism method in a non-sterile soil polluted with aged petroleum hydrocarbons (TPH) and spent transformer oil (PCBs). After inoculation with mixed culture M1, the PCBs were reduced during 6 months by 84.5% and TPH by 70.8% as well as soil toxicity was decreased.
Collapse
Affiliation(s)
- Teresa Steliga
- Department of Reservoir Fluid Production Technology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland;
| | - Katarzyna Wojtowicz
- Department of Reservoir Fluid Production Technology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland;
| | - Piotr Kapusta
- Department of Microbiology, Oil and Gas Institute-National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (P.K.); (J.B.)
| | - Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute-National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (P.K.); (J.B.)
| |
Collapse
|
3
|
Shumkova ES, Egorova DO, Boronnikova SV, Plotnikova EG. Polymorphism of the bphA genes in bacteria destructing biphenyl/chlorinated biphenils. Mol Biol 2015. [DOI: 10.1134/s0026893315040159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Shumkova ES, Voronina AO, Kuznetsova NV, Plotnikova EG. Diversity of key biphenyl destruction genes in the microbial community of the Anadyr Bay coastal sediments. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Dudášová H, Lukáčová L, Murínová S, Puškárová A, Pangallo D, Dercová K. Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. J Basic Microbiol 2013; 54:253-60. [PMID: 23553615 DOI: 10.1002/jobm.201200369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/26/2012] [Indexed: 11/12/2022]
Abstract
This study was focused on the characterization of 15 bacterial strains isolated from long-term PCB-contaminated sediment located at the Strážsky canal in eastern part of Slovakia, in the surroundings of a former PCB producer. PCB-degrading strains were isolated and identified as Microbacterium oleivorans, Stenotrophomonas maltophilia, Brevibacterium sp., Ochrobactrum anthropi, Pseudomonas mandelii, Rhodococcus sp., Achromobacter xylosoxidans, Stenotrophomonas sp., Ochrobactrum sp., Pseudomonas aeruginosa, and Starkeya novella by the 16S rRNA gene sequence phylogenetic analysis. This study presents a newly isolated bacterial strain S. novella with PCB-degrading ability in liquid medium as well as in sediment. For A. xylosoxidans, the bphA gene was identified. The best growth ability in the presence of all sole carbon sources (biphenyl and PCBs vapor) was obtained for Ochrobactrum sp. and Rhodococcus sp. Uncultured Achromobacter sp. showed the highest potential for bioaugmentation of PCB-contaminated sediment.
Collapse
Affiliation(s)
- Hana Dudášová
- Faculty of Chemical and Food Technology, Department of Biochemical Technology, Institute of Biotechnology and Food Science, Slovak University of Technology, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
6
|
Petrić I, Bru D, Udiković-Kolić N, Hršak D, Philippot L, Martin-Laurent F. Evidence for shifts in the structure and abundance of the microbial community in a long-term PCB-contaminated soil under bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:254-260. [PMID: 21885188 DOI: 10.1016/j.jhazmat.2011.08.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/22/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Although the impact of bioremediation of PCB-contaminated sites on the indigenous microbial community is a key question for soil restoration, it remains poorly understood. Therefore, a small-scale bioremediation assay made of (a) a biostimulation treatment with carvone, soya lecithin and xylose and (b) two bioaugmentation treatments, one with a TSZ7 mixed culture and another with a Rhodococcus sp. Z6 pure strain was set up. Changes in the structure of the global soil microbial community and in the abundances of different taxonomic phyla were monitored using ribosomal intergenic spacer analysis (RISA) and real-time PCR. After an 18-month treatment, the structure of the bacterial community in the bioremediated soils was significantly different from that of the native soil. The shift observed in the bacterial community structure using RISA analysis was in accordance with the monitored changes in the abundances of 11 targeted phyla and classes. Actinobacteria, Bacteriodetes and α- and γ-Proteobacteria were more abundant under all three bioremediation treatments, with Actinobacteria representing the dominant phylum. Altogether, our results indicate that bioremediation of PCB-contaminated soil induces significant changes in the structure and abundance of the total microbial community, which must be addressed to implement bioremediation practices in order to restore soil functions.
Collapse
Affiliation(s)
- I Petrić
- Rudjer Boskovic Institute, Division for Marine and Environmental Research, 10002 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|