1
|
Shi L, Ren A, Zhu J, Liu R, Zhao M. Research Progress on Edible Fungi Genetic System. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:269-284. [PMID: 35364695 DOI: 10.1007/10_2021_192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to obtain strains with targeted changes in genetic characteristics, molecular biology and genetic engineering techniques are used to integrate target gene fragments into the vector and transform them into recipient cells. Due to the different target genes and functional elements on the transformation plasmids, gene silencing, gene knockout, and gene overexpression can be carried out, which provides a new way to study the gene function of edible fungi. At present, the cloning vectors used in the transformation of edible fungi are modified by bacterial plasmids, among which pCAMBIA-1300 plasmid and pAN7 plasmid are the two most commonly used basic vectors. On this basis, some basic elements such as promoters, selective marker genes, and reporter genes were added to construct silencing vectors, knockout vectors, and overexpression vectors. At the same time, different expression vector systems are needed for different transformation methods. In this chapter, the main elements of the genetic system (promoters, screening markers), the current main genetic transformation methods (Agrobacterium-mediated transformation, liposome transformation, electroporation method), and the specific application of transformation were systematically summarized, which provides a reference for the study of the genetic system of edible fungi.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Zha ZQ, You S, Hu YH, Zhang F, Chen YW, Wang J. Asn57 N-glycosylation promotes the degradation of hemicellulose by β-1,3-1,4-glucanase from Rhizopus homothallicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8707-8721. [PMID: 35366731 DOI: 10.1007/s11356-022-19959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
N-glycosylation alters the properties of different enzymes in different ways. Rhizopus homothallicus was first described as an environmental isolate from desert soil in Guatemala. A new gene encoding glucanase RhGlu16B was identified in R. homothallicus. It had high specific activity (9673 U/mg) when barley glucan was used as a substrate, and β-glucan is hemicellulose that is abundant in nature. RhGlu16B has only one N-glycosylation site in its Ala55-Gly64 loop. It was found that N-glycosylation increased its Tm value and catalytic efficiency by 5.1 °C and 59%, respectively. Adding N-glycosylation to the same region of GH16 family glucanases TlGlu16A (from Talaromyces leycettanus) increased its thermostability and catalytic efficiency by 6.4 °C and 38%, respectively. In a verification experiment using GH16 family glucanases BisGlu16B (from Bisporus) in which N-glycosylation was removed, N-glycosylation also appeared to promote thermostability and catalytic efficiency. N-glycosylation reduced the overall root mean square deviation of the enzyme structure, creating rigidity and increasing overall thermostability. This study provided a reference for the molecular modification of GH16 family glucanases and guided the utilization of β-glucan in hemicellulose.
Collapse
Affiliation(s)
- Zi-Qian Zha
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Shuai You
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Yang-Hao Hu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Fang Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Yi-Wen Chen
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, People's Republic of China.
| |
Collapse
|
3
|
Zhu Y, Nadia E, Yao Y, Shi Z, Ren G. Tandem repeated expression of lunasin gene in Pichia pastoris and its anti-inflammatory activity in vitro. J Biosci Bioeng 2018; 126:1-8. [DOI: 10.1016/j.jbiosc.2018.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/16/2022]
|
4
|
Li L, Huang C, Zhao F, Deng T, Lin Y, Zheng S, Liang S, Han S. Improved production and characterization of Volvariella volvacea Endoglucanase 1 expressed in Pichia pastoris. Protein Expr Purif 2018; 152:107-113. [PMID: 29551715 DOI: 10.1016/j.pep.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/11/2018] [Accepted: 03/11/2018] [Indexed: 01/17/2023]
Abstract
Endoglucanase 1 (EG1) isolated from the straw mushroom has great potential in the textile and paper industries. Improving EG1 expression level will add to its value for industrial applications. In this study, we employed two combined strategies to enhance the expression quantity of EG1, which are increase the copy number of EG1 and enhance the folding and secretion efficiency of EG1 in the endoplasmic reticulum by overexpress HAC1. Multiple plasmids, which contains four copies of EG1, were constructed by isocaudamers, resulted a recombinant strain with EG1 activity up to 39.6 U/mL, 262% higher than that measured in the strain containing only a single copy. A significant increase in activity (151%) was found when eight copies of EG1 was introduced into a different host, compared with a host harboring four copies. Further overexpression of the HAC1 transcription factor in the host harboring eight EG1 copies led to activity of 91.9 U/mL, which is 619% higher than that measured in the original strain. Finally, EG1 activity of 650.1 U/mL was achieved in a 3-L scaled-up fed-batch fermenter and the protein yield was 4.05 g/L. The characteristics of recombinant EG1 were also investigated, the optimal values for enzyme activity were 60 °C and pH 5.0, which yielded a catalytic efficiency of 312.9 mL mg-1min-1 using carboxymethyl cellulose(CMC) as the substrate.
Collapse
Affiliation(s)
- Ling Li
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Cong Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fengguang Zhao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Deng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Suiping Zheng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuangyan Han
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Rungrattanakasin B, Premjet S, Thanonkeo S, Klanrit P, Thanonkeo P. Cloning and expression of an endoglucanase gene from the thermotolerant fungus Aspergillus fumigatus DBiNU-1 in Kluyveromyces lactis. Braz J Microbiol 2018; 49:647-655. [PMID: 29449177 PMCID: PMC6066738 DOI: 10.1016/j.bjm.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/30/2017] [Accepted: 10/14/2017] [Indexed: 11/24/2022] Open
Abstract
An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19 kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60 °C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60 °C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.
Collapse
Affiliation(s)
| | - Siripong Premjet
- Naresuan University, Faculty of Science, Department of Biology, Phitsanulok, Thailand
| | - Sudarat Thanonkeo
- Mahasarakham University, Walai Rukhavej Botanical Research Institute, Maha Sarakham, Thailand
| | - Preekamol Klanrit
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Faculty of Technology, Fermentation Research Center for Value Added Agricultural Products, Khon Kaen, Thailand
| | - Pornthap Thanonkeo
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Faculty of Technology, Fermentation Research Center for Value Added Agricultural Products, Khon Kaen, Thailand.
| |
Collapse
|
6
|
Jiang W, Lv B, Wu X, Wang J, Wu G, Shi C, Tang X. Analysis of synonymous codon usage patterns in the edible fungusVolvariella volvacea. Biotechnol Appl Biochem 2016; 64:218-224. [DOI: 10.1002/bab.1538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Jiang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Beibei Lv
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Xiao Wu
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Jinbin Wang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Guogan Wu
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Chunhui Shi
- Forestry and Fruit Tree Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Xueming Tang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| |
Collapse
|
7
|
Bai X, Yuan X, Wen A, Li J, Bai Y, Shao T. Cloning, expression and characterization of a cold-adapted endo-1, 4- β-glucanase from Citrobacter farmeri A1, a symbiotic bacterium of Reticulitermes labralis. PeerJ 2016; 4:e2679. [PMID: 27843715 PMCID: PMC5103814 DOI: 10.7717/peerj.2679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Many biotechnological and industrial applications can benefit from cold-adapted EglCs through increased efficiency of catalytic processes at low temperature. In our previous study, Citrobacter farmeri A1 which was isolated from a wood-inhabiting termite Reticulitermes labralis could secrete a cold-adapted EglC. However, its EglC was difficult to purify for enzymatic properties detection because of its low activity (0.8 U/ml). The objective of the present study was to clone and express the C. farmeri EglC gene in Escherichia coli to improve production level and determine the enzymatic properties of the recombinant enzyme. METHODS The EglC gene was cloned from C. farmeri A1 by thermal asymmetric interlaced PCR. EglC was transformed into vector pET22b and functionally expressed in E. coli. The recombination protein EglC22b was purified for properties detection. RESULTS SDS-PAGE revealed that the molecular mass of the recombinant endoglucanase was approximately 42 kDa. The activity of the E. coli pET22b-EglC crude extract was 9.5 U/ml. Additionally, it was active at pH 6.5-8.0 with an optimum pH of 7.0. The recombinant enzyme had an optimal temperature of 30-40 °C and exhibited >50% relative activity even at 5 °C, whereas it lost approximately 90% of its activity after incubation at 60 °C for 30 min. Its activity was enhanced by Co2+ and Fe3+, but inhibited by Cd2+, Zn2+, Li+, Triton X-100, DMSO, acetonitrile, Tween 80, SDS, and EDTA. CONCLUSION These biochemical properties indicate that the recombinant enzyme is a cold-adapted endoglucanase that can be used for various industrial applications.
Collapse
Affiliation(s)
- Xi Bai
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University , Nanjing , China
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University , Nanjing , China
| | - Aiyou Wen
- College of Animal Science, University of Science and Technology of Anhui , Fengyang , China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University , Nanjing , China
| | - Yunfeng Bai
- Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences , Nanjing , China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
8
|
Bai X, Yuan X, Wen A, Li J, Bai Y, Shao T. Efficient expression and characterization of a cold-active endo-1, 4-β-glucanase from Citrobacter farmeri by co-expression of Myxococcus xanthus protein S. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
10
|
Ali N, Xue Y, Gan L, Liu J, Long M. Purification, characterization, gene cloning and sequencing of a new β-glucosidase from Aspergillus niger BE-2. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816050045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y. Characterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement. Front Microbiol 2016; 7:1349. [PMID: 27621727 PMCID: PMC5002442 DOI: 10.3389/fmicb.2016.01349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG) activity but lower β-glucosidase (BGL) activity than those of the others. A uracil auxotroph strain, SP4, was constructed by pyr4 deletion in SN1 to improve transformation efficiency. The BGL1-encoding gene bgl1 under the control of a modified cbh1 promoter was overexpressed in SP4. A transformant, SPB2, with four additional copies of bgl1 exhibited a 17.1-fold increase in BGL activity and a 30.0% increase in filter paper activity. Saccharification of corncob residues with crude enzyme showed that the glucose yield of SPB2 is 65.0% higher than that of SP4. These results reveal the feasibility of strain improvement through the development of an efficient genetic transformation platform to construct a balanced cellulase system for biomass conversion.
Collapse
Affiliation(s)
- Yuanchao Qian
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University Jinan, China
| | - Lixia Zhong
- Shandong Institute for Food and Drug Control Jinan, China
| | - Yunhua Hou
- Bioengineering Institute, Qilu University of Technology Jinan, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University Jinan, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University Jinan, China
| |
Collapse
|
12
|
You S, Tu T, Zhang L, Wang Y, Huang H, Ma R, Shi P, Bai Y, Su X, Lin Z, Luo H, Yao B. Improvement of the thermostability and catalytic efficiency of a highly active β-glucanase from Talaromyces leycettanus JCM12802 by optimizing residual charge-charge interactions. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:124. [PMID: 27303445 PMCID: PMC4906821 DOI: 10.1186/s13068-016-0544-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/02/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND β-Glucanase is one of the most extensively used biocatalysts in biofuel, food and animal feed industries. However, the poor thermostability and low catalytic efficiency of most reported β-glucanases limit their applications. Currently, two strategies are used to overcome these bottlenecks, i.e., mining for novel enzymes from extremophiles and engineering existing enzymes. RESULTS A novel endo-β-1,3-1,4-glucanase of GH16 (Tlglu16A) from the thermophilic fungus Talaromyces leycettanus JCM12802 was produced in Pichia pastoris and characterized. For potential industrial applications, recombinant TlGlu16A exhibits favorable enzymatic properties over most reported glucanases, i.e., remarkable stability over a wide pH range from 1.0 to 10.0 and superior activity on glucan substrates (up to 15,197 U/mg). The only weakness of TlGlu16A is the thermolability at 65 °C and higher. To improve the thermostability, the enzyme thermal stability system was then used to engineer TlGlu16A through optimization of residual charge-charge interactions. Eleven mutants were constructed and compared to the wild-type TlGlu16A. Four mutants, H58D, E134R, D235G and D296K, showed longer half-life time at 80 °C (31, 7, 25, 22 vs. 0.5 min), and two mutants, D235G and D296K, had greater specific activities (158.2 and 122.2 %, respectively) and catalytic efficiencies (k cat/K m, 170 and 114 %, respectively). CONCLUSIONS The engineered TlGlu16A has great application potentials from the perspectives of enzyme yield and properties. Its thermostability and activity were apparently improved in the engineered enzymes through charge optimization. This study spans the genetic, functional and structural fields, and provides a combination of gene mining and protein engineering approaches for the systematic improvement of enzyme performance.
Collapse
Affiliation(s)
- Shuai You
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Tao Tu
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Lujia Zhang
- />State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| | - Yuan Wang
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Huoqing Huang
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Pengjun Shi
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yingguo Bai
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Xiaoyun Su
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Zhemin Lin
- />Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100 People’s Republic of China
| | - Huiying Luo
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
13
|
Lu Y, Li L, Chen W, Wu M. Enhanced Anti-Tumor (Anti-Proliferation) Activity of Recombinant Human Interleukin-29 (IL-29) Mutants Using Site-Directed Mutagenesis Method. Appl Biochem Biotechnol 2015; 177:1164-75. [PMID: 26277192 DOI: 10.1007/s12010-015-1804-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022]
Abstract
Interferon (IFN)-λ, also known as IL-28A, IL-28B, or IL-29, is a new type III IFN, which shares many functional characteristics with type I IFN (α/β). Currently, IFN-α is used in the treatment of certain forms of cancer with severe adverse effects. Some researches had stated that IFN-λs induced a similar but restricted growth inhibition of tumor cells relative to IFN-α; moreover, mutations of IFN-λs could strongly impact its biological properties. In this study, three hIL-29 mutants (K33R, R35K, and K33R/R35K) were generated by site-directed mutagenesis and efficiently expressed in Pichia pastoris GS115, which have considerable abilities to inhibit the growth of BEL-7402, HCT-8, and SGC-7901 tumor cells in vitro. The results showed that these mutants (K33R, R35K, and K33R/R35K) exhibited a significantly enhanced anti-proliferation activity against these tumor cells, compared with native hIL-29 in vitro. Further assay in vitro indicated that superior to K33R and R35K, K33R/R35K had a significant increase in anti-tumor activity compared with IFN-α2b, which suggested that the K33R/R35K could make improvement for the effectiveness of native hIL-29 in clinic and could be used as a potentially powerful candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan Lu
- School of Pharmaceutical Sciences, Jiangnan University, No. 1800 Lihu Road, Wuxi, 214122, China.
| | - Liyun Li
- School of Biotechnology, Jiangnan University, No. 1800 Lihu Road, Wuxi, 214122, China.
| | - Wei Chen
- Wuxi Medical School, Jiangnan University, No. 1800 Lihu Road, Wuxi, 214122, China.
| | - Minchen Wu
- Wuxi Medical School, Jiangnan University, No. 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
14
|
Yin X, Yao Y, Wu MC, Zhu TD, Zeng Y, Pang QF. A unique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability. BIOCHEMISTRY (MOSCOW) 2015; 79:531-7. [PMID: 25100011 DOI: 10.1134/s0006297914060066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on the hyperthermostable family 11 xylanase (EvXyn11(TS)) gene sequence (EU591743), the gene Syxyn11 encoding a thermophilic xylanase SyXyn11 was synthesized with synonymous codons biasing towards Pichia pastoris. The homology alignment of primary structures among family 11 xylanases revealed that, at their N-termini, only SyXyn11 contains a disulfide bridge (Cys5-Cys32). This to some extent implied the significance of the disulfide bridge of SyXyn11 to its thermostability. To confirm the correlation between the N-terminal disulfide bridge and thermostability, a SyXyn11(C5T)-encoding gene, Syxyn11(C5T), was constructed by mutating the Cys5 codon of Syxyn11 to Thr5. Then, the genes for the recombinant xylanases, reSyXyn11 and reSyXyn11(C5T), were expressed in P. pastoris GS115, yielding xylanase activity of about 35 U per ml cell culture. Both xylanases were purified to homogeneity with specific activities of 363 and 344 U/mg, respectively. The temperature optimum and stability of reSyXyn11(C5T) decreased to 70 and 50°C from 85 and 80°C of reSyXyn11, respectively. There was no obvious change in pH characteristics.
Collapse
Affiliation(s)
- X Yin
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| | | | | | | | | | | |
Collapse
|
15
|
Zeng Y, Yin X, Wu MC, Yu T, Feng F, Zhu TD, Pang QF. Expression of a novel feruloyl esterase from Aspergillus oryzae in Pichia pastoris with esterification activity. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Improving the thermostability of a mesophilic family 10 xylanase, AuXyn10A, from Aspergillus usamii by in silico design. J Ind Microbiol Biotechnol 2014; 41:1217-25. [PMID: 24879480 DOI: 10.1007/s10295-014-1463-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
To improve the thermostability of a mesophilic GH family 10 xylanase, AuXyn10A, from Aspergillus usamii E001, its modification was performed by in silico design. Based on the comparison of B-factor values, a mutant xylanase ATXyn10 was predicted by substituting a segment YP from Tyr(25) to Pro(34) of AuXyn10A with the corresponding one from Asn(24) to Ala(32) of TaXyn10, a thermophilic GH family 10 xylanase from Thermoascus aurantiacus. Analysis of a TaXyn10 crystal structure indicated that there is a close interaction between segments YP and FP. For that reason, another mutant xylanase ATXyn10(M) was designed by mutating Ser(286) and His(288) of ATXyn10 into the corresponding Gly(285) and Phe(287) in the FP of TaXyn10. Then, two ATXyn10- and ATXyn10(M)-encoding genes, ATxyn10 and ATxyn10 (M), were expressed in Pichia pas toris GS115. The temperature optimum of recombinant (re) ATXyn10(M) was 60 °C, 10 °C higher than that of reAuXyn10A. Its thermal inactivation half-life (t(1/2)) at 55 °C was 10.4-fold longer than that of reAuXyn10A. As compared with reAuXyn10A, reATXyn10(M) displayed a slight decrease in K(m) value and a significant increase in V(max) value from 6,267 to 8,870 U/mg.
Collapse
|
17
|
Li J, Wei X, Tang C, Wang J, Zhao M, Pang Q, Wu M. Directed modification of the Aspergillus usamii β-mannanase to improve its substrate affinity by in silico design and site-directed mutagenesis. ACTA ACUST UNITED AC 2014; 41:693-700. [DOI: 10.1007/s10295-014-1406-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/16/2014] [Indexed: 01/30/2023]
Abstract
Abstract
β-Mannanases (EC 3.2.1.78) can catalyze the cleavage of internal β-1,4-d-mannosidic linkages of mannan backbones, and they have found applications in food, feed, pulp and paper, oil, pharmaceutical and textile industries. Suitable amino acid substitution can promote access to the substrate-binding groove and maintain the substrate therein, which probably improves the substrate affinity and, thus, increases catalytic efficiency of the enzyme. In this study, to improve the substrate affinity of AuMan5A, a glycoside hydrolase (GH) family 5 β-mannanase from Aspergillus usamii, had its directed modification conducted by in silico design, and followed by site-directed mutagenesis. The mutant genes, Auman5AY111F and Auman5AY115F, were constructed by megaprimer PCR, respectively. Then, Auman5A and its mutant genes were expressed in Pichia pastoris GS115 successfully. The specific activities of purified recombinant β-mannanases (reAuMan5A, reAuMan5AY111F and reAuMan5AY115F) towards locust bean gum were 152.5, 199.6 and 218.9 U mg−1, respectively. The two mutants were found to be similar to reAuMan5A regarding temperature and pH characteristics. Nevertheless, the K m values of reAuMan5AY111F and reAuMan5AY115F, towards guar gum, decreased to 2.95 ± 0.22 and 2.39 ± 0.33 mg ml−1 from 4.49 ± 0.07 mg ml−1 of reAuMan5A, which would make reAuMan5AY111F and reAuMan5AY115F promising candidates for industrial processes. Structural analysis showed that the two mutants increased their affinity by decreasing the steric conflicts with those more complicated substrates. The results suggested that subtle conformational modification in the substrate-binding groove could substantially alter the substrate affinity of AuMan5A. This study laid a solid foundation for the directed modification of substrate affinities of β-mannanases and other enzymes.
Collapse
Affiliation(s)
- Jianfang Li
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu People’s Republic of China
| | - Xihuan Wei
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu People’s Republic of China
| | - Cunduo Tang
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu People’s Republic of China
| | - Junqing Wang
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu People’s Republic of China
| | - Mei Zhao
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu People’s Republic of China
| | - Qingfeng Pang
- grid.258151.a 0000000107081323 Wuxi Medical School Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu People’s Republic of China
| | - Minchen Wu
- grid.258151.a 0000000107081323 Wuxi Medical School Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu People’s Republic of China
| |
Collapse
|
18
|
Zhang HM, Wang JQ, Wu MC, Gao SJ, Li JF, Yang YJ. Optimized expression, purification and characterization of a family 11 xylanase (AuXyn11A) from Aspergillus usamii E001 in Pichia pastoris. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:699-706. [PMID: 23881861 DOI: 10.1002/jsfa.6309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/30/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Xylanases have attracted much attention because of their potential applications. Unfortunately, the commercialization of xylanases is limited by their low catalytic activities. The aim of this study was to improve the activity of a xylanase by optimization of the expression conditions and to investigate its characterization. RESULTS The activity of recombinant AuXyn11A (reAuXyn11A), a family 11 xylanase from Aspergillus usamii E001 expressed in Pichia pastoris GS115, reached 912.6 U mL⁻¹ under the optimized conditions, which was 2.14 times as high as that expressed using the standard protocol. After the endogenous 18-aa propeptide had been processed in P. pastoris, reAuXyn11A (188-aa mature peptide) was secreted and purified with a specific activity of 22 714 U mg⁻¹. It displayed maximum activity at pH 5 and 50 °C and was stable in the pH range 4-8 and at a temperature of 45 °C or below. Its activity was not significantly affected by most metal ions and EDTA. Xylooligosaccharides ranging from xylobiose (X2) to xylohexaose (X6) were produced from insoluble corncob xylan by reAuXyn11A. CONCLUSION Its high specific activity and good enzymatic properties suggest that reAuXyn11A is a potential candidate for applications in industrial processes.
Collapse
Affiliation(s)
- Hui-Min Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | | | | | | | | | | |
Collapse
|
19
|
Anasontzis GE, Salazar Penã M, Spadiut O, Brumer H, Olsson L. Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris. Biotechnol Prog 2014; 30:728-35. [PMID: 24493559 PMCID: PMC4282061 DOI: 10.1002/btpr.1878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/23/2013] [Accepted: 01/29/2014] [Indexed: 11/24/2022]
Abstract
Optimization of protein production from methanol-induced Pichia pastoris cultures is necessary to ensure high productivity rates and high yields of recombinant proteins. We investigated the effects of temperature and different linear or exponential methanol-feeding rates on the production of recombinant Fusarium graminearum galactose oxidase (EC 1.1.3.9) in a P. pastoris Mut+ strain, under regulation of the AOX1 promoter. We found that low exponential methanol feeding led to 1.5-fold higher volumetric productivity compared to high exponential feeding rates. The duration of glycerol feeding did not affect the subsequent product yield, but longer glycerol feeding led to higher initial biomass concentration, which would reduce the oxygen demand and generate less heat during induction. A linear and a low exponential feeding profile led to productivities in the same range, but the latter was characterized by intense fluctuations in the titers of galactose oxidase and total protein. An exponential feeding profile that has been adapted to the apparent biomass concentration results in more stable cultures, but the concentration of recombinant protein is in the same range as when constant methanol feeding is employed. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:728–735, 2014
Collapse
Affiliation(s)
- George E Anasontzis
- Industrial Biotechnology, Dept. of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, Gothenburg, SE-412 96, Sweden
| | | | | | | | | |
Collapse
|
20
|
Wang TY, Huang CJ, Chen HL, Ho PC, Ke HM, Cho HY, Ruan SK, Hung KY, Wang IL, Cai YW, Sung HM, Li WH, Shih MC. Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnol 2013; 13:71. [PMID: 24004614 PMCID: PMC3766678 DOI: 10.1186/1472-6750-13-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 08/29/2013] [Indexed: 11/28/2022] Open
Abstract
Background As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. Results Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. Conclusions Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for increasing the extracellular activities of recombinant proteins expressed in S. cerevisiae.
Collapse
Affiliation(s)
- Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yin X, Li JF, Wang JQ, Tang CD, Wu MC. Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3016-23. [PMID: 23512640 DOI: 10.1002/jsfa.6134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/01/2013] [Accepted: 03/19/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Xylanases have attracted much attention owing to their potential applications. The applicability of xylanases, however, was bottlenecked by their low stabilities at high temperature or extreme pH. The purpose of this work was to enhance the thermostability of a mesophilic xylanase by N-terminal replacement. RESULTS The thermostability of AoXyn11, a mesophilic family 11 xylanase from Aspergillus oryzae, was enhanced by replacing its N-terminal segment with the corresponding one of EvXyn11(TS) , a hyperthermotolerant family 11 xylanase. A hybrid xylanase with high thermostability, NhXyn11⁵⁷, was predicted by molecular dynamics (MD) simulation. An NhXyn11⁵⁷-encoding gene, Nhxyn11⁵⁷, was then constructed as designed theoretically, and overexpressed in Pichia pastoris. The temperature optimum of recombinant NhXyn11⁵⁷ (re-NhXyn11⁵⁷) was 75 °C, much higher than that of re-AoXyn11. Both xylanases were thermostable at 65 and 40 °C, respectively. Additionally, the pH optimum and stability of re-NhXyn11⁵⁷ were 5.5 and at a range of 4.0-8.5. Its activity was not significantly affected by metal ions tested and EDTA, but strongly inhibited by Mn²⁺ and Ag⁺. CONCLUSION This work obviously enhanced the thermostability of a mesophilic xylanase, making re-NhXyn11⁵⁷ a promising candidate for industrial processes. It also provided an effective technical strategy for improving thermostabilities of other mesophilic enzymes.
Collapse
Affiliation(s)
- Xin Yin
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | | | | | | |
Collapse
|
22
|
Chen Z, Zhang H, Wang J, Tang C, Wu J, Wu M. Engineering the thermostability of a xylanase from Aspergillus oryzae by an enhancement of the interactions between the N-terminus extension and the β-sheet A2 of the enzyme. Biotechnol Lett 2013; 35:2073-9. [DOI: 10.1007/s10529-013-1298-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
|
23
|
Enhancing expression level of an acidophilic β-mannanase in Pichia pastoris by double vector system. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0689-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PLoS One 2013; 8:e64766. [PMID: 23741390 PMCID: PMC3669383 DOI: 10.1371/journal.pone.0064766] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022] Open
Abstract
The AuMan5A, an acidophilic glycoside hydrolase (GH) family 5 β-mannanase derived from Aspergillus usamii YL-01-78, consists of an only catalytic domain (CD). To perfect enzymatic properties of the AuMan5A, a family 1 carbohydrate-binding module (CBM) of the Trichoderma reesei cellobiohydrolase I (TrCBH I), having the lowest binding free energy with cellobiose, was selected by in silico design, and fused into its C-terminus forming a fusion β-mannanase, designated as AuMan5A-CBM. Then, its encoding gene, Auman5A-cbm, was constructed as it was designed theoretically, and expressed in Pichia pastoris GS115. SDS-PAGE analysis displayed that both recombinant AuMan5A-CBM (reAuMan5A-CBM) and AuMan5A (reAuMan5A) were secreted into the cultured media with apparent molecular masses of 57.3 and 49.8 kDa, respectively. The temperature optimum of the reAuMan5A-CBM was 75°C, being 5°C higher than that of the reAuMan5A. They were stable at temperatures of 68 and 60°C, respectively. Compared with reAuMan5A, the reAuMan5A-CBM showed an obvious decrease in Km and a slight alteration in Vmax. In addition, the fusion of a CBM of the TrCBH I into the AuMan5A contributed to its cellulose-binding capacity.
Collapse
|
25
|
Yin X, Gong YY, Wang JQ, Tang CD, Wu MC. Cloning and expression of a family 10 xylanase gene (Aoxyn10) from Aspergillus oryzae in Pichia pastoris. J GEN APPL MICROBIOL 2013; 59:405-15. [DOI: 10.2323/jgam.59.405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Gao SJ, Wang JQ, Wu MC, Zhang HM, Yin X, Li JF. Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution. Biotechnol Bioeng 2012; 110:1028-38. [PMID: 23097144 DOI: 10.1002/bit.24768] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/06/2012] [Accepted: 10/11/2012] [Indexed: 11/11/2022]
Abstract
A mesophilic xylanase from Aspergillus oryzae CICC40186 (abbreviated to AoXyn11A) belongs to glycoside hydrolase family 11. The thermostability of AoXyn11A was significantly improved by substituting its N-terminus with the corresponding region of a hyperthermostable family 11 xylanase, EvXyn11(TS) . The suitable N-terminus of AoXyn11A to be replaced was selected by the comparison of B-factors between AoXyn11A and EvXyn11(TS) , which were generated and calculated after a 15 ns molecular dynamic (MD) simulation process. Then, the predicted hybrid xylanase (designated AEx11A) was modeled, and subjected to a 2 ns MD simulation process for calculating its total energy value. The N-terminus substitution was confirmed by comparing the total energy value of AEx11A with that of AoXyn11A. Based on the in silico design, the AEx11A was constructed and expressed in Pichia pastoris GS115. After 72 h of methanol induction, the recombinant AEx11A (reAEx11A) activity reached 82.2 U/mL. The apparent temperature optimum of reAEx11A was 80°C, much higher than that of reAoXyn11A. Its half-life was 197-fold longer than that of reAoXyn11A at 70°C. Compared with reAoXyn11A, the reAEx11A displayed a slight alteration in K(m) but a decrease in V(max).
Collapse
Affiliation(s)
- Shu-Juan Gao
- School of Medicine and Pharmaceutics, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Li JF, Gao SJ, Liu XT, Gong YY, Chen ZF, Wei XH, Zhang HM, Wu MC. Modified pPIC9K vector-mediated expression of a family 11 xylanase gene, Aoxyn11A, from Aspergillus oryzae in Pichia pastoris. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Wang JQ, Yin X, Wu MC, Zhang HM, Gao SJ, Wei JT, Tang CD, Li JF. Expression of a family 10 xylanase gene from Aspergillus usamii E001 in Pichia pastoris and characterization of the recombinant enzyme. J Ind Microbiol Biotechnol 2012; 40:75-83. [PMID: 23053346 DOI: 10.1007/s10295-012-1201-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/18/2012] [Indexed: 12/29/2022]
Abstract
A cDNA gene (Auxyn10A), which encodes a mesophilic family 10 xylanase from Aspergillus usamii E001 (abbreviated to AuXyn10A), was amplified and inserted into the XhoI and NotI sites of pPIC9K(M) vector constructed from a parent pPIC9K. The recombinant expression vector, designated pPIC9K(M)-Auxyn10A, was transformed into Pichia pastoris GS115. All P. pastoris transformants were spread on a MD plate, and then inoculated on geneticin G418-containing YPD plates for screening multiple copies of integration of the Auxyn10A. One transformant expressing the highest recombinant AuXyn10A (reAuXyn10A) activity of 368.6 U/ml, numbered as P. pastoris GSX10A4-14, was selected by flask expression test. SDS-PAGE assay demonstrated that the reAuXyn10A was extracellularly expressed with an apparent M.W. of 39.8 kDa. The purified reAuXyn10A displayed the maximum activity at pH 5.5 and 50 °C. It was highly stable at a broad pH range of 4.5-8.5, and at a temperature of 45 °C. Its activity was not significantly affected by EDTA and several metal ions except Mn(2+), which caused a strong inhibition. The K(m) and V(max), towards birchwood xylan at pH 5.5 and 50 °C, were 2.25 mg/ml and 6,267 U/mg, respectively. TLC analysis verified that the AuXyn10A is an endo-β-1,4-D-xylanase, which yielded a major product of xylotriose and a small amount of xylose, xylotetraose, and xylopentose from birchwood xylan, but no xylobiose.
Collapse
Affiliation(s)
- Jun-Qing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Oliveira GS, Ulhoa CJ, Silveira MHL, Andreaus J, Silva-Pereira I, Poças-Fonseca MJ, Faria FP. An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates. World J Microbiol Biotechnol 2012; 29:19-26. [PMID: 23054694 DOI: 10.1007/s11274-012-1153-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/09/2012] [Indexed: 11/25/2022]
Abstract
Humicola grisea var. thermoidea is a deuteromycete which secretes a large spectrum of hydrolytic enzymes when grown on lignocellulosic residues. This study focused on the heterologous expression and recombinant enzyme analysis of the major secreted cellulase when the fungus is grown on sugarcane bagasse as the sole carbon source. Cellobiohydrolase 1.2 (CBH 1.2) cDNA was cloned in Pichia pastoris under control of the AOX1 promoter. Recombinant protein (rCBH1.2) was efficiently produced and secreted as a functional enzyme, presenting a molecular mass of 47 kDa. Maximum enzyme production was achieved at 96 h, in culture medium supplemented with 1.34 % urea and 1 % yeast extract and upon induction with 1 % methanol. Recombinant enzyme exhibited optimum activity at 60 °C and pH 8, and presented a remarkable thermostability, particularly at alkaline pH. Activity was evaluated on different cellulosic substrates (carboxymethyl cellulose, filter paper, microcrystalline cellulose and 4-para-nitrophenyl β-D-glucopyranoside). Interestingly, rCBH1.2 presented both exoglucanase and endoglucanase activities and mechanical agitation increased substrate hydrolysis. Results indicate that rCBH1.2 is a potential biocatalyst for applications in the textile industry or detergent formulation.
Collapse
Affiliation(s)
- G S Oliveira
- Laboratório de Biotecnologia de Fungos, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Campus II, Universidade Federal de Goiás, Goiânia, GO, CEP: 74001-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Cloning and Expression of a Novel Xylanase Gene (Auxyn11D) from Aspergillus usamii E001 in Pichia pastoris. Appl Biochem Biotechnol 2012; 167:2198-211. [DOI: 10.1007/s12010-012-9757-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
31
|
High-level expression of a novel Penicillium endo-1,3(4)-β-d-glucanase with high specific activity in Pichia pastoris. ACTA ACUST UNITED AC 2012; 39:869-76. [DOI: 10.1007/s10295-012-1087-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/12/2012] [Indexed: 11/27/2022]
Abstract
Abstract
A novel endo-1,3(4)-β-d-glucanase gene (bgl16C1) from Penicillium pinophilum C1 was cloned and sequenced. The 945-bp full-length gene encoded a 315-residue polypeptide consisting of a putative signal peptide of 18 residues and a catalytic domain belonging to glycosyl hydrolase family 16. The deduced amino acid sequence showed the highest identity (82%) with the putative endo-1,3(4)-β-glucanase from Talaromyces stipitatus ATCC 10500 and 60% identity with the characterized β-1,3(4)-glucanase from Paecilomyces sp. FLH30. The gene was successfully overexpressed in Pichia pastoris. Recombinant Bgl16C1 constituted 95% of total secreted proteins (2.61 g l−1) with activity of 28,721 U ml−1 in a 15-l fermentor. The purified recombinant Bgl16C1 had higher specific activity toward barley β-glucan (12,622 U mg−1) than all known glucanases and also showed activity against lichenan and laminarin. The enzyme was optimally active at pH 5.0 and 55°C and exhibited good stability over a broad acid and alkaline pH range (>85% activity at pH 3.0–7.0 and even 30% at pH 11.0). All these favorable enzymatic properties make it attractive for potential applications in various industries.
Collapse
|
32
|
Li JF, Zhao SG, Tang CD, Wang JQ, Wu MC. Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:765-773. [PMID: 22225502 DOI: 10.1021/jf2041565] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A cDNA fragment of the Anman5A, a gene that encodes an acidophilic β-mannanase of Aspergillus niger LW-1 (abbreviated as AnMan5A), was cloned and functionally expressed in Pichia pastoris . Homology alignment of amino acid sequences verified that the AnMan5A belongs to the glycoside hydrolase (GH) family 5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assay demonstrated that the recombinant AnMan5A (reAnMan5A), a N-glycosylated protein with an apparent molecular weight of 52.0 kDa, was secreted into the medium. The highest reAnMan5A activity expressed by one P. pastoris transformant, labeled as GSAnMan4-12, reached 29.0 units/mL. The purified reAnMan5A displayed the highest activity at pH 3.5 and 70 °C. It was stable at a pH range of 3.0-7.0 and at a temperature of 60 °C or below. Its activity was not significantly affected by an array of metal ions and ethylenediaminetetraacetic acid (EDTA). The K(m) and V(max) of the reAnMan5A, toward locust bean gum, were 1.10 mg/mL and 266.7 units/mg, respectively.
Collapse
Affiliation(s)
- Jian-Fang Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. J Ind Microbiol Biotechnol 2011; 39:347-57. [PMID: 21935697 DOI: 10.1007/s10295-011-1039-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Using 3' and 5' rapid amplification of cDNA ends methods, the full-length cDNA sequence encoding an endo-1,4-β-glucanase of Aspergillus usamii E001 (abbreviated as AuCel12A) was amplified from the total RNA. The clone cDNA sequence of the gene encoding the AuCel12A, named as Aucel12A, is 1,027 bp in length harboring 5' and 3' non-coding regions, as well as a 720 bp of open reading frame that encodes a 16-aa signal peptide, and a 223-aa mature AuCel12A with a theoretical M.W. of 24,294 Da, a calculated pI of 4.15, and one putative N-glycosylation site. The complete DNA sequence of the gene Aucel12A was amplified from the genomic DNA of A. usamii E001 by using the conventional PCR and pUCm-T vector-mediated PCR initially developed in our lab. The clone DNA sequence is 1,576 bp in length, consisting of a 5' flanking regulatory region, three exons, and two introns with sizes of 50 and 66 bp. The cDNA fragment encoding the mature AuCel12A was expressed in a fully active form in Pichia pastoris. One P. pastoris transformant expressing the highest recombinant AuCel12A (rAuCel12A) activity, labeled as P. pastoris GSCel2-1, was chosen for subsequent studies. Integration of the Aucel12A into P. pastoris genome was confirmed by PCR analysis using 5'- and 3'-AOX1 primers. SDS-PAGE and enzyme activity assays demonstrated that the rAuCel12A, a glycosylated protein with an apparent M.W. of 27.0 kDa and a carbohydrate content of 4.82%, was secreted into the culture medium. The purified rAuCel12A displayed the highest activity at pH 5.0 and 60°C. It was highly stable at a pH range of 3.5-7.0, and at a temperature of 55°C or below. Its activity was not significantly affected by an array of metal ions and EDTA, but inhibited by Ag⁺, Hg²⁺ and Fe²⁺. The K(m) and V(max) of the rAuCel12A, towards carboxymethylcellulose-Na (CMC-Na) at pH 5.0 and 50°C were 4.85 mg/ml and 160.5 U/mg, respectively.
Collapse
|