1
|
Hamal EK, Alfassi G, Antonenko M, Rein DM, Cohen Y. Cellulose-coated emulsion micro-particles self-assemble with yeasts for cellulose bio-conversion. Sci Rep 2024; 14:5499. [PMID: 38448579 PMCID: PMC10918086 DOI: 10.1038/s41598-024-56204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
In the quest for alternative renewable energy sources, a new self-assembled hybrid configuration of cellulose-coated oil-in-water emulsion particles with yeast was formed. In this research, the addition of yeasts (S. cerevisiae) to the micro-particle emulsion revealed a novel self-assembly configuration in which the yeast cell is connected to surrounding cellulose-coated micro-particles. This hybrid configuration may enhance the simultaneous saccharification and fermentation process by substrate channeling. Glucose produced by hydrolysis of the cellulose shells coating the micro-particles, catalyzed by cellulytic enzymes attached to their coating, is directly fermented to ethanol by the yeasts to which the particles are connected. The results indicate ethanol yield of 62%, based on the cellulose content of the emulsion, achieved by the yeast/micro-particle hybrids. The functionality of this hybrid configuration is expected to serve as a micro-reactor for a cascade of biochemical reactions in a "one-pot" consolidated process transforming cellulose to valuable chemicals, such as biodiesel.
Collapse
Affiliation(s)
- Ester Korkus Hamal
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Gilad Alfassi
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Margarita Antonenko
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yachin Cohen
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| |
Collapse
|
2
|
Past, Present, and Future Perspectives on Whey as a Promising Feedstock for Bioethanol Production by Yeast. J Fungi (Basel) 2022; 8:jof8040395. [PMID: 35448626 PMCID: PMC9031875 DOI: 10.3390/jof8040395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Concerns about fossil fuel depletion and the environmental effects of greenhouse gas emissions have led to widespread fermentation-based production of bioethanol from corn starch or sugarcane. However, competition for arable land with food production has led to the extensive investigation of lignocellulosic sources and waste products of the food industry as alternative sources of fermentable sugars. In particular, whey, a lactose-rich, inexpensive byproduct of dairy production, is available in stable, high quantities worldwide. This review summarizes strategies and specific factors essential for efficient lactose/whey fermentation to ethanol. In particular, we cover the most commonly used strains and approaches for developing high-performance strains that tolerate fermentation conditions. The relevant genes and regulatory systems controlling lactose utilization and sources of new genes are also discussed in detail. Moreover, this review covers the optimal conditions, various feedstocks that can be coupled with whey substrates, and enzyme supplements for increasing efficiency and yield. In addition to the historical advances in bioethanol production from whey, this review explores the future of yeast-based fermentation of lactose or whey products for beverage or fuel ethanol as a fertile research area for advanced, environmentally friendly uses of industrial waste products.
Collapse
|
3
|
Repeated-batch simultaneous saccharification and fermentation of cassava pulp for ethanol production using amylases and Saccharomyces cerevisiae immobilized on bacterial cellulose. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
On the Optimization of Fermentation Conditions for Enhanced Bioethanol Yields from Starchy Biowaste via Yeast Co-Cultures. SUSTAINABILITY 2021. [DOI: 10.3390/su13041890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study aims to assess the impact of the type of yeast consortium used during bioethanol production from starchy biowastes and to determine the optimal fermentation conditions for enhanced bioethanol production. Three different yeast strains, Saccharomyces cerevisiae, Pichia barkeri, and Candida intermedia were used in mono- and co-cultures with pretreated waste-rice as substrate. The optimization of fermentation conditions i.e., fermentation time, temperature, pH, and inoculum size, was investigated in small-scale batch cultures and subsequently, the optimal conditions were applied for scaling-up and validation of the process in a 7-L fermenter. It was shown that co-culturing of yeasts either in couples or triples significantly enhanced the fermentation efficiency of the process, with ethanol yield reaching 167.80 ± 0.49 g/kg of biowaste during experiments in the fermenter.
Collapse
|
5
|
Fan Y, Tian X, Zheng L, Jin X, Zhang Q, Xu S, Liu P, Yang N, Bai H, Wang H. Yeast encapsulation in nanofiber via electrospinning: Shape transformation, cell activity and immobilized efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111747. [PMID: 33545889 DOI: 10.1016/j.msec.2020.111747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
To realize encapsulation of living microbial cells and easily evaluation of cell viability after immobilization, the yeast cells were encapsulated in water soluble PAAm nanofiber by a facile and effective electrospinning technology. Firstly, the conductivity, shear viscosity and surface tension of PAAm/yeast electrospinning solution as a function of mass ratios of yeast/PAAm were investigated to determine the optimum solution condition for electrospinning immobilization. After electrospinning, it is interesting to note that the original ellipsoidal structure of yeast cells turns to oblate spheroid structure. To distinguish immobilization structure from the bead appearing during general electrospinning process, immobilization structure and bead structure were compared and analyzed by FESEM and EDX. Free cell activity, the immediate cell activity after electrospinning and cell activity for seven days storage after immobilization were evaluated by dying methods of CTC and methylene blue, respectively. The results show that encapsulation efficiency maintained at about 40%, and immobilized yeast cells remain active even after seven days storage, which provides a promising application prospect for electrospinning immobilization.
Collapse
Affiliation(s)
- Yansheng Fan
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Xiaokang Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Linbao Zheng
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Xiao Jin
- Yantai Nanshan University, Nanshan Group, Shandong 265706, China
| | - Qingsong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shenyang Xu
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Pengfei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haihui Bai
- School of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioethanol is considered an excellent alternative to fossil fuels, since it importantly contributes to the reduced consumption of crude oil, and to the alleviation of environmental pollution. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over others, e.g., it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars); tolerate high temperature, toxins, and a wide range of pH values; and produce volatile short-chain ester. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species. These attributes make K. marxianus promising as an industrial host for the biosynthesis of biofuels and other valuable chemicals.
Collapse
|
7
|
Lu J, Peng W, Lv Y, Jiang Y, Xu B, Zhang W, Zhou J, Dong W, Xin F, Jiang M. Application of Cell Immobilization Technology in Microbial Cocultivation Systems for Biochemicals Production. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01867] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Yang Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
8
|
Yang Z, Sun Q, Tan G, Zhang Q, Wang Z, Li C, Qi F, Wang W, Zhang L, Li Z. Engineering thermophilic Geobacillus thermoglucosidasius for riboflavin production. Microb Biotechnol 2020; 14:363-373. [PMID: 32096925 PMCID: PMC7936320 DOI: 10.1111/1751-7915.13543] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
The potential advantages for fermentation production of chemicals at high temperatures are attractive, such as promoting the rate of biochemical reactions, reducing the risk of contamination and the energy consumption for fermenter cooling. In this work, we de novo engineered the thermophile Geobacillus thermoglucosidasius to produce riboflavin, since this bacterium can ferment diverse carbohydrates at an optimal temperature of 60°C with a high growth rate. We first introduced a heterogeneous riboflavin biosynthetic gene cluster and enabled the strain to produce detectable riboflavin (28.7 mg l−1). Then, with the aid of an improved gene replacement method, we preformed metabolic engineering in this strain, including replacement of ribCGtg with a mutant allele to weaken the consumption of riboflavin, manipulation of purine pathway to enhance precursor supply, deletion of ccpNGtg to tune central carbon catabolism towards riboflavin production and elimination of the lactate dehydrogenase gene to block the dominating product lactic acid. Finally, the engineered strain could produce riboflavin with the titre of 1034.5 mg l−1 after 12‐h fermentation in a mineral salt medium, indicating G. thermoglucosidasius is a promising host to develop high‐temperature cell factory of riboflavin production. This is the first demonstration of riboflavin production in thermophilic bacteria at an elevated temperature.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Qingqing Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Gaoyi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Quanwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Chuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Fengxian Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
9
|
A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. Int J Mol Sci 2018; 20:ijms20010014. [PMID: 30577530 PMCID: PMC6337527 DOI: 10.3390/ijms20010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Antibiotics without selectivity for acne treatment may destroy the beneficial microbes in the human microbiome that helps to fight Cutibacterium acnes (C. acnes), a bacterium associated with inflammatory acne vulgaris. Probiotic treatment by direct application of live Staphylococcus epidermidis (S. epidermidis) onto the open acne lesions may run the risk of bloodstream infections. Here, we fabricated the polysulfone microtube array membranes (PSF MTAM) to encapsulate probiotic S.epidermidis. We demonstrate that the application of the encapsulation of S. epidermidis in PSF MTAM enhanced the glycerol fermentation activities of S. epidermidis. To mimic the granulomatous type of acne inflammatory acne vulgaris, the ears of mice were injected intradermally with C. acnes to induce the secretion of macrophage inflammatory protein-2 (MIP-2), a murine counterpart of human interleukin (IL)-8. The C. acnes-injected mouse ears were covered with a PST MTAM encapsulated with or without S.epidermidis in the presence of glycerol. The application of S.epidermidis-encapsulated PST MTAM plus glycerol onto the C. acnes-injected mouse ears considerably reduced the growth of C. acnes and the production of MIP-2. Furthermore, no S. epidermidis leaked from PSF MTAM into mouse skin. The S. epidermidis-encapsulated PST MTAM functions as a probiotic acne patch.
Collapse
|
10
|
Nuanpeng S, Thanonkeo S, Klanrit P, Thanonkeo P. Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Braz J Microbiol 2018; 49 Suppl 1:140-150. [PMID: 29588196 PMCID: PMC6328710 DOI: 10.1016/j.bjm.2017.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 10/05/2017] [Accepted: 12/14/2017] [Indexed: 11/23/2022] Open
Abstract
Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20×20×5mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54g/L and 1.36g/Lh, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.
Collapse
Affiliation(s)
- Sunan Nuanpeng
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand
| | - Sudarat Thanonkeo
- Mahasarakham University, Walai Rukhavej Botanical Research Institute, Mahasarakham, Thailand
| | - Preekamol Klanrit
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen, Thailand
| | - Pornthap Thanonkeo
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen, Thailand.
| |
Collapse
|
11
|
Nosrati-Ghods N, Harrison STL, Isafiade AJ, Tai SL. Ethanol from Biomass Hydrolysates by Efficient Fermentation of Glucose and Xylose - A Review. CHEMBIOENG REVIEWS 2018. [DOI: 10.1002/cben.201800009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nosaibeh Nosrati-Ghods
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Adeniyi J. Isafiade
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Siew L. Tai
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
12
|
Struyf N, Laurent J, Verspreet J, Verstrepen KJ, Courtin CM. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8704-8713. [PMID: 28869377 DOI: 10.1021/acs.jafc.7b02793] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56% reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.
Collapse
Affiliation(s)
- Nore Struyf
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- VIB Laboratory for Systems Biology & CMPG Laboratory for Genetics and Genomics, KU Leuven, Bio-Incubator , Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Jitka Laurent
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology & CMPG Laboratory for Genetics and Genomics, KU Leuven, Bio-Incubator , Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Shafiei R, Zarmehrkhorshid R, Mounir M, Thonart P, Delvigne F. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation. Bioprocess Biosyst Eng 2017; 40:769-780. [PMID: 28204982 DOI: 10.1007/s00449-017-1742-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
Much research has been conducted about different types of fermentation at high temperature, but only a few of them have studied cell viability changes during high-temperature fermentation. In this study, Acetobacter senegalensis, a thermo-tolerant strain, was used for gluconic acid production at 38 °C. The influences of different carbon sources and physicochemical conditions on cell viability and the resuscitation of viable but nonculturable (VBNC) cells formed during fermentation were studied. Based on the obtained results, A. senegalensis could oxidize 95 g l- 1 glucose to gluconate at 38 °C (pH 5.5, yield 83%). However, despite the availability of carbon and nitrogen sources, the specific rates of glucose consumption (qs) and gluconate production (qp) reduced progressively. Interestingly, gradual qs and qp reduction coincided with gradual decrease in cellular dehydrogenase activity, cell envelope integrity, and cell culturability as well as with the formation of VBNC cells. Entry of cells into VBNC state during stationary phase partly stemmed from high fermentation temperature and long-term oxidation of glucose, because just about 48% of VBNC cells formed during stationary phase were resuscitated by supplementing the culture medium with an alternative favorite carbon source (low concentration of ethanol) and/or reducing incubation temperature to 30 °C. This indicates that ethanol, as a favorable carbon source, supports the repair of stressed cells. Since formation of VBNC cells is often inevitable during high-temperature fermentation, using an alternative carbon source together with changing physicochemical conditions may enable the resuscitation of VBNC cells and their use for several production cycles.
Collapse
Affiliation(s)
- Rasoul Shafiei
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Raziyeh Zarmehrkhorshid
- Walloon Center for Industrial Biology, University of Liège, Bld. du Rectorat 29, Sart-Tilman, 4000, Liège, Belgium. .,Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, Bio-Industry Unit, University of Liège, 5030, Gembloux, Belgium.
| | - Majid Mounir
- Hassan II Institute of Agronomy and Veterinary Medicine (IAV), PB 6202, Rabat, Morocco
| | - Philippe Thonart
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.,Walloon Center for Industrial Biology, University of Liège, Bld. du Rectorat 29, Sart-Tilman, 4000, Liège, Belgium.,Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, Bio-Industry Unit, University of Liège, 5030, Gembloux, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, Bio-Industry Unit, University of Liège, 5030, Gembloux, Belgium
| |
Collapse
|
14
|
Zichová M, Stratilová E, Omelková J, Vadkertiová R, Babák L, Rosenberg M. Production of ethanol from waste paper using immobilized yeasts. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0036-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Akbas MY, Stark BC. Recent trends in bioethanol production from food processing byproducts. J Ind Microbiol Biotechnol 2016; 43:1593-1609. [PMID: 27565674 DOI: 10.1007/s10295-016-1821-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/30/2016] [Indexed: 12/19/2022]
Abstract
The widespread use of corn starch and sugarcane as sources of sugar for the production of ethanol via fermentation may negatively impact the use of farmland for production of food. Thus, alternative sources of fermentable sugars, particularly from lignocellulosic sources, have been extensively investigated. Another source of fermentable sugars with substantial potential for ethanol production is the waste from the food growing and processing industry. Reviewed here is the use of waste from potato processing, molasses from processing of sugar beets into sugar, whey from cheese production, byproducts of rice and coffee bean processing, and other food processing wastes as sugar sources for fermentation to ethanol. Specific topics discussed include the organisms used for fermentation, strategies, such as co-culturing and cell immobilization, used to improve the fermentation process, and the use of genetic engineering to improve the performance of ethanol producing fermenters.
Collapse
Affiliation(s)
- Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Kocaeli, 41400, Turkey. .,Institute of Biotechnology, Gebze Technical University, Gebze-Kocaeli, Kocaeli, 41400, Turkey.
| | - Benjamin C Stark
- Biology Department, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
16
|
Khamkeaw A, Phisalaphong M. Hydrolysis of cassava starch by co-immobilized multi-microorganisms of Loog-Pang (Thai rice cake starter) for ethanol fermentation. Food Sci Biotechnol 2016; 25:509-516. [PMID: 30263299 DOI: 10.1007/s10068-016-0071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/07/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022] Open
Abstract
Loog-Pang (Thai rice cake starter) is an effective and inexpensive microbial source for the hydrolysis of cassava starch to glucose. A process for hydrolysis of cassava starch to glucose by Loog- Pang was improved by co-immobilized multi-microorganisms (IC) using thin shell silk cocoon (TSC). After incubation at 35°C for 120 h, the IC-TSC system converted 20% w/v cassava starch slurry into clear glucose syrup containing a glucose concentration of 145.5 g/L (composed of 98.8% glucose and 1.2% oligosaccharides), with little or no contamination by microorganisms. The glucose concentration from the starch hydrolysis process using the IC-TSC system was approximately 1.3 times more than that of suspended cultures (SC). The starch hydrolysate could be used as the carbon source for ethanol fermentation without sterilization. A concentration of ethanol of 71.2 g/L (9.1%, v/v) was obtained at 36 h fermentation of the starch hydrolysate by Saccharomyces cerevisiae M30.
Collapse
Affiliation(s)
- Arnon Khamkeaw
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Muenduen Phisalaphong
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
17
|
Chen CC, Wu CH, Wu JJ, Chiu CC, Wong CH, Tsai ML, Lin HTV. Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Arora R, Behera S, Sharma NK, Kumar S. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front Microbiol 2015; 6:889. [PMID: 26388844 PMCID: PMC4555967 DOI: 10.3389/fmicb.2015.00889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
The progressive rise in energy crisis followed by green house gas (GHG) emissions is serving as the driving force for bioethanol production from renewable resources. Current bioethanol research focuses on lignocellulosic feedstocks as these are abundantly available, renewable, sustainable and exhibit no competition between the crops for food and fuel. However, the technologies in use have some drawbacks including incapability of pentose fermentation, reduced tolerance to products formed, costly processes, etc. Therefore, the present study was carried out with the objective of isolating hexose and pentose fermenting thermophilic/thermotolerant ethanologens with acceptable product yield. Two thermotolerant isolates, NIRE-K1 and NIRE-K3 were screened for fermenting both glucose and xylose and identified as Kluyveromyces marxianus NIRE-K1 and K. marxianus NIRE-K3. After optimization using Face-centered Central Composite Design (FCCD), the growth parameters like temperature and pH were found to be 45.17°C and 5.49, respectively for K. marxianus NIRE-K1 and 45.41°C and 5.24, respectively for K. marxianus NIRE-K3. Further, batch fermentations were carried out under optimized conditions, where K. marxianus NIRE-K3 was found to be superior over K. marxianus NIRE-K1. Ethanol yield (Y x∕s ), sugar to ethanol conversion rate (%), microbial biomass concentration (X) and volumetric product productivity (Q p ) obtained by K. marxianus NIRE-K3 were found to be 9.3, 9.55, 14.63, and 31.94% higher than that of K. marxianus NIRE-K1, respectively. This study revealed the promising potential of both the screened thermotolerant isolates for bioethanol production.
Collapse
Affiliation(s)
- Richa Arora
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
- I.K Gujral Punjab Technical UniversityKapurthala, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
| | - Nilesh K. Sharma
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
- I.K Gujral Punjab Technical UniversityKapurthala, India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-EnergyKapurthala, India
| |
Collapse
|
19
|
Zhang Y, Niu X, Shi M, Pei G, Zhang X, Chen L, Zhang W. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2015; 6:487. [PMID: 26052317 PMCID: PMC4440267 DOI: 10.3389/fmicb.2015.00487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v) ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the Δslr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive Δslr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the Δslr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the Δslr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| |
Collapse
|
20
|
Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A. Bioethanol production from fermentable sugar juice. ScientificWorldJournal 2014; 2014:957102. [PMID: 24715820 PMCID: PMC3970039 DOI: 10.1155/2014/957102] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/31/2013] [Indexed: 11/25/2022] Open
Abstract
Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks.
Collapse
Affiliation(s)
- Hossain Zabed
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Golam Faruq
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jaya Narayan Sahu
- Department of Petroleum and Chemical Engineering, Faculty of Engineering, Institut Teknologi Brunei, Tungku Gadong, P.O. Box 2909, Brunei Darussalam
| | - Mohd Sofian Azirun
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rosli Hashim
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amru Nasrulhaq Boyce
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Impact of High Temperature on Ethanol Fermentation by Kluyveromyces marxianus Immobilized on Banana Leaf Sheath Pieces. Appl Biochem Biotechnol 2013; 171:806-16. [DOI: 10.1007/s12010-013-0411-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
|
22
|
Duarte JC, Rodrigues JAR, Moran PJS, Valença GP, Nunhez JR. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 2013; 3:31. [PMID: 23721664 PMCID: PMC3695878 DOI: 10.1186/2191-0855-3-31] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/02/2013] [Indexed: 11/10/2022] Open
Abstract
Saccharomyces cerevisiae cells were immobilized in calcium alginate and chitosan-covered calcium alginate beads and studied in the fermentation of glucose and sucrose for ethanol production. The batch fermentations were carried out in an orbital shaker and assessed by monitoring the concentration of substrate and product with HPLC. Cell immobilization in calcium alginate beads and chitosan-covered calcium alginate beads allowed reuse of the beads in eight sequential fermentation cycles of 10 h each. The final concentration of ethanol using free cells was 40 g L-1 and the yields using glucose and sucrose as carbon sources were 78% and 74.3%, respectively. For immobilized cells in calcium alginate beads, the final ethanol concentration from glucose was 32.9 ± 1.7 g L-1 with a 64.5 ± 3.4% yield, while the final ethanol concentration from sucrose was 33.5 ± 4.6 g L-1 with a 64.5 ± 8.6% yield. For immobilized cells in chitosan-covered calcium alginate beads, the ethanol concentration from glucose was 30.7 ± 1.4 g L-1 with a 61.1 ± 2.8% yield, while the final ethanol concentration from sucrose was 31.8 ± 6.9 g L-1 with a 62.1 ± 12.8% yield. The immobilized cells allowed eight 10 h sequential reuse cycles to be carried out with stable final ethanol concentrations. In addition, there was no need to use antibiotics and no contamination was observed. After the eighth cycle, there was a significant rupture of the beads making them inappropriate for reuse.
Collapse
|
23
|
Chong H, Huang L, Yeow J, Wang I, Zhang H, Song H, Jiang R. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One 2013; 8:e57628. [PMID: 23469036 PMCID: PMC3585226 DOI: 10.1371/journal.pone.0057628] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol tolerant CRP mutants (E1- E3) were identified from error-prone PCR libraries. The best ethanol-tolerant strain E2 (M59T) had the growth rate of 0.08 h(-1) in 62 g/L ethanol, higher than that of the control at 0.06 h(-1). The M59T mutation was then integrated into the genome to create variant iE2. When exposed to 150 g/l ethanol, the survival of iE2 after 15 min was about 12%, while that of BW25113 was <0.01%. Quantitative real-time reverse transcription PCR analysis (RT-PCR) on 444 CRP-regulated genes using OpenArray® technology revealed that 203 genes were differentially expressed in iE2 in the absence of ethanol, whereas 92 displayed differential expression when facing ethanol stress. These genes belong to various functional groups, including central intermediary metabolism (aceE, acnA, sdhD, sucA), iron ion transport (entH, entD, fecA, fecB), and general stress response (osmY, rpoS). Six up-regulated and twelve down-regulated common genes were found in both iE2 and E2 under ethanol stress, whereas over one hundred common genes showed differential expression in the absence of ethanol. Based on the RT-PCR results, entA, marA or bhsA was knocked out in iE2 and the resulting strains became more sensitive towards ethanol.
Collapse
Affiliation(s)
- Huiqing Chong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Lei Huang
- Institute of Biological Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Jianwei Yeow
- System Engineering, Life Technologies, Singapore
| | - Ivy Wang
- System Engineering, Life Technologies, Singapore
| | - Hongfang Zhang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Hao Song
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|