1
|
Yamada S, Shirai M, Nagashima K, Mochizuki J, Ono K, Kageyama S. Beneficial Effects of Enoki Mushroom Extract on Male Menopausal Symptoms in Japanese Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2025; 17:1208. [PMID: 40218966 PMCID: PMC11990359 DOI: 10.3390/nu17071208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
With the increase in average life expectancy, age-related male menopause has become a cause of decreased quality of life in men. The present study investigated the efficacy and safety of powdered enoki mushroom extract containing adenosine (test food) for menopausal symptoms in middle-aged and elderly men based on an evaluation of Heinemann's Aging Males' Symptoms (AMS) scores. The test food and placebo were administered to healthy men with AMS scores of 27-49 for 12 weeks. AMS score (primary endpoint) and testosterone level (secondary endpoint) were evaluated before and 12 weeks after the intake of the test food and placebo. The intake of the test food for 12 weeks significantly improved the sexual subscale of the AMS. In the cumulative χ2 test, the number of subjects showing high improvement was significantly higher in the test food group than in the placebo food group. In a stratified analysis of subjects divided into two groups based on a change in total testosterone levels of <0.5 ng/mL and ≥0.5 ng/mL after the intake of the test food, the number of subjects with increased total testosterone levels of ≥0.5 ng/mL was significantly higher in the test food group than in the placebo group. These results suggest the beneficial effects of enoki mushroom extract on symptoms of male menopause.
Collapse
Affiliation(s)
- Shizuo Yamada
- Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Michiyo Shirai
- Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Koji Nagashima
- TechnoSuruga Laboratory Co., Ltd., Shizuoka 424-0065, Japan; (K.N.); (J.M.)
| | - Jun Mochizuki
- TechnoSuruga Laboratory Co., Ltd., Shizuoka 424-0065, Japan; (K.N.); (J.M.)
| | - Ken Ono
- Izu Health & Medical Center, Shizuoka 410-0638, Japan;
| | | |
Collapse
|
2
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Zhang E, Zhang J, Zhao R, Lu Y, Yin X, Lan X, Luo Z. Role of MicroRNA-Like RNAs in the Regulation of Spore Morphological Differences in the Entomopathogenic Fungus Metarhizium acridum. Pol J Microbiol 2022; 71:309-324. [PMID: 36185022 PMCID: PMC9608168 DOI: 10.33073/pjm-2022-028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Metarhizium acridum is an important microbial pesticide. Conidia (CO) and blastospores (BS) are two types of spores that occur in different patterns in the M. acridum life cycle and exhibit significant differences in cell morphology, structure, and activity. It may suggest that the fungus has a complex gene regulation mechanism. While previous studies on the differences between CO and BS have mainly focused on cell structure and application, little is known regarding the differences between CO and BS in fungi on the transcriptome levels. MicroRNAs (miRNAs) are small noncoding RNAs crucial to gene regulation and cell function. Understanding the miRNA-like RNAs (milRNA) and mRNA expression profiles related to cell growth and cellular morphological changes would elucidate the roles of miRNAs in spore morphological differences. In this study, 4,646 differentially expressed genes (DEGs) were identified and mainly classified in the GO terms cell, cell part, biological process, and catalytic activity. The KEGG annotation suggested that they were enriched in amino acid biosynthesis, carbohydrate metabolism, ribosome, and oxidative phosphorylation and might be involved in cell activity and structure. There were 113 differentially expressed milRNAs (DEMs), targeting 493 DEGs. Target gene functional analysis revealed that the target genes were mainly enriched in RNA transport, purine metabolism, and the cell cycle. In addition, we identified essential genes from milRNA-mRNA pairs that might participate in cell budding growth and cell membrane and wall integrity, including adenosine deaminase, glycosyl hydrolase, and G-patch domain protein (dno-miR-328-3p), WD repeat-containing protein pop1 (age-miR-127), and GPI-anchored wall transfer protein (cgr-miR-598). MilRNAs might therefore play a crucial role in cell growth and cellular morphological changes as transcriptional and post-transcriptional regulators.
Collapse
Affiliation(s)
- Erhao Zhang
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jie Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Rundong Zhao
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Yazhou Lu
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Xiu Yin
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Xiaozhong Lan
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China, E-mail:
| | - Zhang Luo
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China, E-mail:
| |
Collapse
|
4
|
ALIMU YIKELAMU, KUSUYA YOKO, YAMAMOTO TAKAKO, ARITA KANA, SHIGEMUNE NAOFUMI, TAKAHASHI HIROKI, YAGUCHI TAKASHI. Mechanism of Polyhexamethylene Biguanide Resistance in <i>Purpureocillium lilacinum</i> Strains. Biocontrol Sci 2022; 27:117-130. [DOI: 10.4265/bio.27.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | - KANA ARITA
- R&D-Safety Science Research, Kao Corporation
| | | | | | | |
Collapse
|
5
|
Wu T, Zhang Z, Hu C, Zhang L, Wei S, Li S. A WD40 Protein Encoding Gene Fvcpc2 Positively Regulates Mushroom Development and Yield in Flammulina velutipes. Front Microbiol 2020; 11:498. [PMID: 32273873 PMCID: PMC7113406 DOI: 10.3389/fmicb.2020.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Ascomycota and Basidiomycota are two closely related phyla and fungi in two phyla share some common morphological developmental process during fruiting body formation. In Neurospora crassa, the Gβ-like protein CPC-2 with a seven-WD40 repeat domain was previously reported. By transforming CPC-2 ortholog encoding genes, from 7 different fungal species across Ascomycota and Basidiomycota, into the cpc-2 deletion mutant of N. crassa, we demonstrate that all tested CPC-2 ortholog genes were able to complement the defects of the cpc-2 deletion mutant in sexual development, indicating that CPC-2 proteins from Ascomycota and Basidiomycota have the similar cellular function. Using Flammulina velutipes as a model system for mushroom species, the CPC-2 ortholog FvCPC2 was characterized. Fvcpc2 increased transcription during fruiting body development. Knockdown of Fvcpc2 by RNAi completely impaired fruiting body formation. In three Fvcpc2 knockdown mutants, transcriptional levels of genes encoding adenylate cyclase and protein kinase A catalytic subunit were significantly lower and colony growth became slower than wild type. The addition of cAMP or the PKA-activator 8-Bromo-cAMP into the medium restored the Fvcpc2 knockdown mutants to the wild-type colony growth phenotype, suggesting that the involvement of cAMP production in the regulatory mechanisms of FvCPC2. Knockdown of Fvcpc2 also weakened transcriptional responses to sexual development induction by some genes related to fruiting body development, including 4 jacalin-related lectin encoding genes, 4 hydrophobin encoding genes, and 3 functionally-unknown genes, suggesting the participation of these genes in the mechanisms by which FvCPC2 regulates fruiting body development. All three Fvcpc2 overexpression strains displayed increased mushroom yield and shortened cultivation time compared to wild type, suggesting that Fvcpc2 can be a promising reference gene for Winter Mushroom breeding. Since the orthologs of FvCPC2 were highly conserved and specifically expressed during fruiting body development in different edible mushrooms, genes encoding FvCPC2 orthologs in other mushroom species also have potential application in breeding.
Collapse
Affiliation(s)
- Taju Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Zhang
- Shandong Jinniu Biotech Company Limited, Jinan, China
| | - Shenglong Wei
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
A Single Transcription Factor (PDD1) Determines Development and Yield of Winter Mushroom ( Flammulina velutipes). Appl Environ Microbiol 2019; 85:AEM.01735-19. [PMID: 31604770 DOI: 10.1128/aem.01735-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 11/20/2022] Open
Abstract
Most of the edible mushrooms cannot be cultivated or have low yield under industrial conditions, partially due to the lack of knowledge on how basidioma (fruiting body) development is regulated. From winter mushroom (Flammulina velutipes), one of the most popular industrially cultivated mushrooms, a transcription factor, PDD1, with a high-mobility group (HMG)-box domain was identified based on its increased transcription during basidioma development. pdd1 knockdown by RNA interference affected vegetative growth and dramatically impaired basidioma development. A strain with an 89.9% reduction in the level of pdd1 transcription failed to produce primordia, while overexpression of pdd1 promoted basidioma development. When the transcriptional level of pdd1 was increased to 5 times the base level, the mushroom cultivation time was shortened by 9.8% and the yield was increased by at least 33%. RNA sequencing (RNA-seq) analysis revealed that pdd1 knockdown downregulated 331 genes and upregulated 463 genes. PDD1 positively regulated several genes related to fruiting, including 6 pheromone receptor-encoding genes, 3 jacalin-related lectin-encoding genes, FVFD16, and 2 FVFD16 homolog-encoding genes. PDD1 is a novel transcription factor with regulatory function in basidioma development found in industrially cultivated mushrooms. Since its orthologs are widely present in fungal species of the Basidiomycota phylum, PDD1 might have important application prospects in mushroom breeding.IMPORTANCE Mushrooms are sources of food and medicine and provide abundant nutrients and bioactive compounds. However, most of the edible mushrooms cannot be cultivated commercially due to the limited understanding of basidioma development. From winter mushroom (Flammulina velutipes; also known as Enokitake), one of the most commonly cultivated mushrooms, we identified a novel transcription factor, PDD1, positively regulating basidioma development. PDD1 increases expression during basidioma development. Artificially increasing its expression promoted basidioma formation and dramatically increased mushroom yield, while reducing its expression dramatically impaired its development. In its PDD1 overexpression mutants, mushroom number, height, yield, and biological efficiency were significantly increased. PDD1 regulates the expression of some genes that are important in or related to basidioma development. PDD1 is the first identified transcription factor with defined functions in mushroom development among commercially cultivated mushroom species, and it might be useful in mushroom breeding.
Collapse
|
7
|
Liu JY, Chang MC, Meng JL, Feng CP, Wang Y. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3716-3725. [PMID: 29584419 DOI: 10.1021/acs.jafc.8b00383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In some industrial processes, cold and light stresses are recognized as two important environmental triggers for the transformation of mycelia into fruit-bodies via intermediate primordia in Flammulina velutipes cultivation. To gain insights into the mechanism of regulation of F. velutipes mycelia in response to cold and light stress, proteins expressed abundantly and characteristically at particular stress states were investigated by using the isobaric tags for the relative and absolute quantitation labeling technique. Among the 1046 nonredundant proteins identified with a high degree of confidence, 264 proteins, which were detected as differentially expressed proteins, were associated with 176 specific KEGG pathways. In-depth data analysis revealed that the regulatory network underlying the cold and light response mechanisms of F. velutipes mycelia was complex and multifaceted, as it included varied functions such as rapid energy supply, the biosynthesis of lysine, phenylalanine, tyrosine, and γ-aminobutyric acid, the calcium signal transduction process, dynein-dependent actin and microtubule cytoskeleton formation, autolysis, oxidative stress adaptation, pigment secretion, tissue and organ morphogenesis, and other interesting stress-related processes. Insights into the proteins might shed light on an intuitive understanding of the cold and light stress response mechanism underlying the fruiting processes of F. velutipes. Furthermore, the data might also provide further insights into the stress response mechanism of macro-fungi and valuable information for scientific improvement of some mushroom cultivation techniques in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Ming-Chang Chang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Jun-Long Meng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Cui-Ping Feng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Yu Wang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
| |
Collapse
|
8
|
Liu JY, Chang MC, Meng JL, Feng CP, Zhao H, Zhang ML. Comparative Proteome Reveals Metabolic Changes during the Fruiting Process in Flammulina velutipes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5091-5100. [PMID: 28570075 DOI: 10.1021/acs.jafc.7b01120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the molecular mechanisms regulating the fruiting process in macro-fungi, especially industrially cultivated mushrooms, has long been a goal in mycological research. To gain insights into the events accompanying the transformation of mycelia into fruit-bodies in Flammulina velutipes, proteins expressed characteristically and abundantly at primordium and fruit-body stages were investigated by using the iTRAQ labeling technique. Among the 171 differentially expressed proteins, a total of 68 displayed up-regulated expression levels that were associated with 84 specific KEGG pathways. Some up-regulated proteins, such as pyruvate carboxylase, aldehyde dehydrogenase, fatty acid synthase, aspartate aminotransferase, 2-cysteine peroxiredoxin, FDS protein, translation elongation factor 1-alpha, mitogen-activated protein kinases (MAPKs), and heat-shock protein 70 that are involved in carbohydrate metabolism, carotenoid formation, the TCA cycle, MAPK signaling pathway, and the biosynthesis of fatty acids and branched-chain amino acids, could serve as potential stage-specific biomarkers to study the fruiting process in F. velutipes. Knowledge of the proteins might provide valuable evidence to better understand the molecular mechanisms of fruit-body initiation and development in basidiomycete fungi. Furthermore, this study also offers valuable evidence for yield improvement and quality control of super golden-needle mushroom in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Jun-Long Meng
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Cui-Ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Hui Zhao
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
| | - Ming-Liang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
| |
Collapse
|
9
|
|
10
|
Liu JY, Chang MC, Meng JL, Feng CP, Liu YN. iTRAQ-Based Comparative Proteomics Analysis of the Fruiting Dikaryon and the Non-fruiting Monokaryon of Flammulina velutipes. Curr Microbiol 2016; 74:114-124. [DOI: 10.1007/s00284-016-1164-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
11
|
Advances in Understanding Mating Type Gene Organization in the Mushroom-Forming Fungus Flammulina velutipes. G3-GENES GENOMES GENETICS 2016; 6:3635-3645. [PMID: 27621376 PMCID: PMC5100862 DOI: 10.1534/g3.116.034637] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The initiation of sexual development in the important edible and medicinal mushroom Flammulina velutipes is controlled by special genes at two different, independent, mating type (MAT) loci: HD and PR. We expanded our understanding of the F. velutipes mating type system by analyzing the MAT loci from a series of strains. The HD locus of F. velutipes houses homeodomain genes (Hd genes) on two separated locations: sublocus HD-a and HD-b. The HD-b subloci contained strain-specific Hd1/Hd2 gene pairs, and crosses between strains with different HD-b subloci indicated a role in mating. The function of the HD-a sublocus remained undecided. Many, but not all strains contained the same conserved Hd2 gene at the HD-a sublocus. The HD locus usually segregated as a whole, though we did detect one new HD locus with a HD-a sublocus from one parental strain, and a HD-b sublocus from the other. The PR locus of F. velutipes contained pheromone receptor (STE3) and pheromone precursor (Pp) genes at two locations, sublocus PR-a and PR-b. PR-a and PR-b both contained sets of strain-specific STE3 and Pp genes, indicating a role in mating. PR-a and PR-b cosegregated in our experiments. However, the identification of additional strains with identical PR-a, yet different PR-b subloci, demonstrated that PR subloci can recombine within the PR locus. In conclusion, at least three of the four MAT subloci seem to participate in mating, and new HD and PR loci can be generated through intralocus recombination in F. velutipes.
Collapse
|
12
|
Nishikawa R, Yoshida M, Noda T, Okuhara T, Taguchi G, Inatomi S, Shimosaka M. pFungiway: a series of plasmid vectors used for gene manipulation in fungi. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1166-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|