1
|
Gubelt A, Blaschke L, Hahn T, Rupp S, Hirth T, Zibek S. Comparison of Different Lactobacilli Regarding Substrate Utilization and Their Tolerance Towards Lignocellulose Degradation Products. Curr Microbiol 2020; 77:3136-3146. [PMID: 32728792 PMCID: PMC7452873 DOI: 10.1007/s00284-020-02131-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022]
Abstract
Fermentative lactic acid production is currently impeded by low pH tolerance of the production organisms, the successive substrate consumption of the strains and/or the requirement to apply purified substrate streams. We identified Lactobacillus brevis IGB 1.29 in compost, which is capable of producing lactic acid at low pH values from lignocellulose hydrolysates, simultaneously consuming glucose and xylose. In this study, we compared Lactobacillus brevis IGB 1.29 with the reference strains Lactobacillus brevis ATCC 367, Lactobacillus plantarum NCIMB 8826 and Lactococcus lactis JCM 7638 with regard to the consumption of C5- and C6-sugars. Simultaneous conversion of C5- and C6-monosaccharides was confirmed for L. brevis IGB 1.29 with consumption rates of 1.6 g/(L h) for glucose and 1.0 g/(L h) for xylose. Consumption rates were lower for L. brevis ATCC 367 with 0.6 g/(L h) for glucose and 0.2 g/(L h) for xylose. Further trials were carried out to determine the sensitivity towards common toxic degradation products in lignocellulose hydrolysates: acetate, hydroxymethylfurfural, furfural, formate, levulinic acid and phenolic compounds from hemicellulose fraction. L. lactis was the least tolerant strain towards the inhibitors, whereas L. brevis IGB 1.29 showed the highest tolerance. L. brevis IGB 1.29 exhibited only 10% growth reduction at concentrations of 26.0 g/L acetate, 1.2 g/L furfural, 5.0 g/L formate, 6.6 g/L hydroxymethylfurfural, 9.2 g/L levulinic acid or 2.2 g/L phenolic compounds. This study describes a new strain L. brevis IGB 1.29, that enables efficient lactic acid production with a lignocellulose-derived C5- and C6-sugar fraction.
Collapse
Affiliation(s)
- Angela Gubelt
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Institute for Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Lisa Blaschke
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Thomas Hahn
- Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany
| | - Steffen Rupp
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany
| | - Thomas Hirth
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany. .,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany.
| |
Collapse
|
2
|
Genome-scale exploration of transcriptional regulation in the nisin Z producer Lactococcus lactis subsp. lactis IO-1. Sci Rep 2020; 10:3787. [PMID: 32123183 PMCID: PMC7051946 DOI: 10.1038/s41598-020-59731-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Transcription is of the most crucial steps of gene expression in bacteria, whose regulation guarantees the bacteria's ability to adapt to varying environmental conditions. Discovering the molecular basis and genomic principles of the transcriptional regulation is thus one of the most important tasks in cellular and molecular biology. Here, a comprehensive phylogenetic footprinting framework was implemented to predict maximal regulons of Lactococcus lactis subsp. lactis IO-1, a lactic acid bacterium known for its high potentials in nisin Z production as well as efficient xylose consumption which have made it a promising biotechnological strain. A total set of 321 regulons covering more than 90% of all the bacterium's operons have been elucidated and validated according to available data. Multiple novel biologically-relevant members were introduced amongst which arsC, mtlA and mtl operon for BusR, MtlR and XylR regulons can be named, respectively. Moreover, the effect of riboflavin on nisin biosynthesis was assessed in vitro and a negative correlation was observed. It is believed that understandings from such networks not only can be useful for studying transcriptional regulatory potentials of the target organism but also can be implemented in biotechnology to rationally design favorable production conditions.
Collapse
|
4
|
Li L, Ma Y. The effect of soluble saccharides on the activity of key enzymes linked to methyl ketone synthesis inLactococcus lactis. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2017.1401666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liang Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Yanase H, Araya-Kojima T, Shiwa Y, Watanabe S, Zendo T, Chibazakura T, Shimizu-Kadota M, Sonomoto K, Yoshikawa H. Transcriptional regulation of xylose utilization in Enterococcus mundtii QU 25. RSC Adv 2015. [DOI: 10.1039/c5ra15028k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the xylose and/or glucose utilization by QU 25,the transcriptional regulation of related genes is involved in the catabolite repression,not in the metabolic shift between homo- and hetero-lactic fermentations.
Collapse
Affiliation(s)
- Hiroaki Yanase
- Department of Bioscience
- Tokyo University of Agriculture
- Tokyo 156-8502
- Japan
| | | | - Yuh Shiwa
- Genome Research Center
- NODAI Research Institute
- Tokyo University of Agriculture
- Tokyo 156-8502
- Japan
| | - Satoru Watanabe
- Department of Bioscience
- Tokyo University of Agriculture
- Tokyo 156-8502
- Japan
| | - Takeshi Zendo
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Taku Chibazakura
- Department of Bioscience
- Tokyo University of Agriculture
- Tokyo 156-8502
- Japan
| | - Mariko Shimizu-Kadota
- Department of Environmental Sciences
- Musashino University
- Tokyo 135-8181
- Japan
- Department of Bioscience
| | - Kenji Sonomoto
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Hirofumi Yoshikawa
- Department of Bioscience
- Tokyo University of Agriculture
- Tokyo 156-8502
- Japan
- Genome Research Center
| |
Collapse
|
7
|
Shiwa Y, Yanase H, Hirose Y, Satomi S, Araya-Kojima T, Watanabe S, Zendo T, Chibazakura T, Shimizu-Kadota M, Yoshikawa H, Sonomoto K. Complete genome sequence of Enterococcus mundtii QU 25, an efficient L-(+)-lactic acid-producing bacterium. DNA Res 2014; 21:369-77. [PMID: 24568933 PMCID: PMC4131831 DOI: 10.1093/dnares/dsu003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63 tRNA genes, and 6 rRNA operons were predicted in the QU 25 chromosome. Plasmid pQY024 harbours genes for mundticin production. We found that strain QU 25 produces a bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For lactic acid fermentation, two gene clusters were identified—one involved in the initial metabolism of xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The data provide insights into lactate production in this bacterium and its evolution among enterococci.
Collapse
Affiliation(s)
- Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hiroaki Yanase
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuu Hirose
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Shohei Satomi
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomoko Araya-Kojima
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Mariko Shimizu-Kadota
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan Department of Environmental Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-0063, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|