1
|
Gervasoni S, Pedrini N, Rifai T, Fischer C, Landers FC, Mattmann M, Dreyfus R, Viviani S, Veciana A, Masina E, Aktas B, Puigmartí-Luis J, Chautems C, Pané S, Boehler Q, Gruber P, Nelson BJ. A Human-Scale Clinically Ready Electromagnetic Navigation System for Magnetically Responsive Biomaterials and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310701. [PMID: 38733269 DOI: 10.1002/adma.202310701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Magnetic navigation systems are used to precisely manipulate magnetically responsive materials enabling the realization of new minimally invasive procedures using magnetic medical devices. Their widespread applicability has been constrained by high infrastructure demands and costs. The study reports on a portable electromagnetic navigation system, the Navion, which is capable of generating a large magnetic field over a large workspace. The system is easy to install in hospital operating rooms and transportable through health care facilities, aiding in the widespread adoption of magnetically responsive medical devices. First, the design and implementation approach for the system are introduced and its performance is characterized. Next, in vitro navigation of different microrobot structures is demonstrated using magnetic field gradients and rotating magnetic fields. Spherical permanent magnets, electroplated cylindrical microrobots, microparticle swarms, and magnetic composite bacteria-inspired helical structures are investigated. The navigation of magnetic catheters is also demonstrated in two challenging endovascular tasks: 1) an angiography procedure and 2) deep navigation within the circle of Willis. Catheter navigation is demonstrated in a porcine model in vivo to perform an angiography under magnetic guidance.
Collapse
Affiliation(s)
- Simone Gervasoni
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Norman Pedrini
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Tarik Rifai
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Cedric Fischer
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Fabian C Landers
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Michael Mattmann
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Roland Dreyfus
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Silvia Viviani
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Andrea Veciana
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Enea Masina
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Buse Aktas
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), 08028, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | | | - Salvador Pané
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Quentin Boehler
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Philipp Gruber
- Kantonsspital Aarau AG, Tellstrasse 25, CH-5001, Aarau, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, ETH Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
2
|
Zein-based 3D tubular constructs with tunable porosity for 3D cell culture and drug delivery. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
Antunes M, Bonani W, Reis RL, Migliaresi C, Ferreira H, Motta A, Neves NM. Development of alginate-based hydrogels for blood vessel engineering. BIOMATERIALS ADVANCES 2022; 134:112588. [PMID: 35525739 DOI: 10.1016/j.msec.2021.112588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Vascular diseases are among the primary causes of death worldwide. In serious conditions, replacement of the damaged vessel is required. Autologous grafts are preferred, but their limited availability and difficulty of the harvesting procedures favour synthetic alternatives' use. However, as synthetic grafts may present significant drawbacks, tissue engineering-based solutions are proposed. Herein, tubular hydrogels of alginate combined with collagen type I and/or silk fibroin were prepared by ionotropic gelation using gelatin hydrogel sacrificial moulds loaded with calcium ions (Ca2+). The time of exposure of alginate solutions to Ca2+-loaded gelatin was used to control the wall thickness of the hydrogels (0.47 ± 0.10 mm-1.41 ± 0.21 mm). A second crosslinking step with barium chloride prevented their degradation for a 14 day period and improved mechanical properties by two-fold. Protein leaching tests showed that collagen type I, unlike silk fibroin, was strongly incorporated in the hydrogels. The presence of silk fibroin in the alginate matrix, containing or not collagen, did not significantly improve hydrogels' properties. Conversely, hydrogels enriched only with collagen were able to better support EA.hy926 and MRC-5 cells' growth and characteristic phenotype. These results suggest that a two-step crosslinking procedure combined with the use of collagen type I allow for producing freestanding vascular substitutes with tuneable properties in terms of size, shape and wall thickness.
Collapse
Affiliation(s)
- Margarida Antunes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Walter Bonani
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Claudio Migliaresi
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Helena Ferreira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Sustainable Applications of Nanofibers in Agriculture and Water Treatment: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14010464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural fibers are an important source for producing polymers, which are highly applicable in their nanoform and could be used in very broad fields such as filtration for water/wastewater treatment, biomedicine, food packaging, harvesting, and storage of energy due to their high specific surface area. These natural nanofibers could be mainly produced through plants, animals, and minerals, as well as produced from agricultural wastes. For strengthening these natural fibers, they may reinforce with some substances such as nanomaterials. Natural or biofiber-reinforced bio-composites and nano–bio-composites are considered better than conventional composites. The sustainable application of nanofibers in agricultural sectors is a promising approach and may involve plant protection and its growth through encapsulating many bio-active molecules or agrochemicals (i.e., pesticides, phytohormones, and fertilizers) for smart delivery at the targeted sites. The food industry and processing also are very important applicable fields of nanofibers, particularly food packaging, which may include using nanofibers for active–intelligent food packaging, and food freshness indicators. The removal of pollutants from soil, water, and air is an urgent field for nanofibers due to their high efficiency. Many new approaches or applicable agro-fields for nanofibers are expected in the future, such as using nanofibers as the indicators for CO and NH3. The role of nanofibers in the global fighting against COVID-19 may represent a crucial solution, particularly in producing face masks.
Collapse
|
5
|
Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern innovation in reconstructive medicine implies the proposition of material-based strategies suitable for tissue repair and regeneration. The development of such systems necessitates the design of advanced materials and the control of their interactions with their surrounding cellular and molecular microenvironments. Biomaterials must actively engage cellular matter to direct and modulate biological responses at implant sites and beyond. Indeed, it is essential that a true dialogue exists between the implanted device and the cells. Biomaterial engineering implies the knowledge and control of cell fate considering the globality of the adhesion process, from initial cell attachment to differentiation. The extracellular matrix (ECM) represents a complex microenvironment able to meet these essential needs to establish a relationship between the material and the contacting cells. The ECM exhibits specific physical, chemical, and biochemical characteristics. Considering the complexity, heterogeneity, and versatility of ECM actors, fibronectin (Fn) has emerged among the ECM protagonists as the most pertinent representative key actor. The following review focuses on and synthesizes the research supporting the potential to use Fn in biomaterial functionalization to mimic the ECM and enhance cell–material interactions.
Collapse
|
6
|
Guo Y, Wang X, Shen Y, Dong K, Shen L, Alzalab AAA. Research progress, models and simulation of electrospinning technology: a review. JOURNAL OF MATERIALS SCIENCE 2021; 57:58-104. [PMID: 34658418 PMCID: PMC8513391 DOI: 10.1007/s10853-021-06575-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/29/2021] [Indexed: 05/09/2023]
Abstract
In recent years, nanomaterials have aroused extensive research interest in the world's material science community. Electrospinning has the advantages of wide range of available raw materials, simple process, small fiber diameter and high porosity. Electrospinning as a nanomaterial preparation technology with obvious advantages has been studied, such as its influencing parameters, physical models and computer simulation. In this review, the influencing parameters, simulation and models of electrospinning technology are summarized. In addition, the progresses in applications of the technology in biomedicine, energy and catalysis are reported. This technology has many applications in many fields, such as electrospun polymers in various aspects of biomedical engineering. The latest achievements in recent years are summarized, and the existing problems and development trends are analyzed and discussed.
Collapse
Affiliation(s)
- Yajin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200 People’s Republic of China
| | - Ying Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Kuo Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Linyi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Asmaa Ahmed Abdullah Alzalab
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
7
|
Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021; 132:114-128. [PMID: 33652164 PMCID: PMC7611653 DOI: 10.1016/j.actbio.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.
Collapse
Affiliation(s)
- Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Rebecca J Shipley
- Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
8
|
Veerubhotla K, Lee Y, Lee CH. Parametric Optimization of 3D Printed Hydrogel-Based Cardiovascular Stent. Pharm Res 2021; 38:885-900. [PMID: 33970399 DOI: 10.1007/s11095-021-03049-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to develop personalized biodegradable stent (BDS) for the treatment of coronary heart disease. Three-dimensional (3D) printing technique has offered easy and fast fabrication of BDS with enhanced reproducibility and efficacy. METHODS A variety of BDS were printed with 3 types of hydrogel (~5 ml) resources (10%w/v sodium alginate (SA), 10%w/v cysteine-sodium alginate (SA-CYS), and 10%w/v cysteine-sodium alginate with 0.4%w/v PLA-nanofibers (SA-CYS-NF)) dispersed from an 22G print head nozzle attached to the BD-syringe. The printability of hydrogels into 3D structures was examined based on such variables as hydrogel's viscosity, printing distance, printing speed and the nozzle size. RESULTS It was demonstrated that alginate composition (10%w/v) offered BDS with sufficient viscosity that defined the thickness and swelling ratio of the stent struts. The thickness of the strut was found to be 338.7 ± 29.3 μm, 262.5 ± 14.7 μm and 237.1 ± 14.7 μm for stents made of SA, SA-CYS and SA-CYS-NF, respectively. SA-CYS-NF stent displayed the highest swelling ratio of 38.8 ± 2.9% at the initial 30 min, whereas stents made of SA and SA-CYS had 23.1 ± 2.4% and 22.0 ± 2.4%, respectively. CONCLUSION The printed stents had sufficient mechanical strength and were stable against pseudo-physiological wall shear stress. An addition of nanofibers to alginate hydrogel significantly enhanced the biodegradation rates of the stents. In vitro cell culture studies revealed that stents had no cytotoxic effects on human umbilical vein endothelial cells (HUVECs) and Raw 264.7 cells (i.e., Monocyte/macrophage-like cells), supporting that stents are biocompatible and can be explored for future clinical applications.
Collapse
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences, University of Missouri-Kansas City, 2464 Charlotte Street, HSB-4242, Kansas City, MO, 64108, USA
| | - Yugyung Lee
- School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Chi H Lee
- Division of Pharmacology and Pharmaceutics Sciences, University of Missouri-Kansas City, 2464 Charlotte Street, HSB-4242, Kansas City, MO, 64108, USA.
| |
Collapse
|
9
|
Sta. Agueda JRH, Chen Q, Maalihan RD, Ren J, da Silva ÍGM, Dugos NP, Caldona EB, Advincula RC. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS COMMUNICATIONS 2021; 11:197-212. [PMID: 33936866 PMCID: PMC8075026 DOI: 10.1557/s43579-021-00038-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 05/06/2023]
Abstract
ABSTRACT Research on polymer materials for additive manufacturing technology in biomedical applications is as promising as it is numerous, but biocompatibility of printable materials still remains a big challenge. Changes occurring during the 3D-printing processes itself may have adverse effects on the compatibility of the completed print. This prospective will put emphasis on the different additives and processes that can have a direct impact on biocompatibility during and after 3D printing of polymer materials. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Joseph Rey H. Sta. Agueda
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Manufacturing Engineering and Management, De La Salle University, 1004 Manila, Philippines
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Qiyi Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Reymark D. Maalihan
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Food Engineering and Material Testing and Calibration Center, Batangas State University, 4200 Batangas City, Philippines
| | - Jingbo Ren
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ítalo G. M. da Silva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Nathaniel P. Dugos
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Eugene B. Caldona
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
| | - Rigoberto C. Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
10
|
Sarigil O, Anil-Inevi M, Firatligil-Yildirir B, Unal YC, Yalcin-Ozuysal O, Mese G, Tekin HC, Ozcivici E. Scaffold-free biofabrication of adipocyte structures with magnetic levitation. Biotechnol Bioeng 2020; 118:1127-1140. [PMID: 33205833 DOI: 10.1002/bit.27631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.
Collapse
Affiliation(s)
- Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Muge Anil-Inevi
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | - Yagmur Ceren Unal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
11
|
Cho M, Park JK. Fabrication of a Perfusable 3D In Vitro Artery-Mimicking Multichannel System for Artery Disease Models. ACS Biomater Sci Eng 2020; 6:5326-5336. [DOI: 10.1021/acsbiomaterials.0c00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Minkyung Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Pernal SP, Willis AJ, Sabo ME, Moore LM, Olson ST, Morris SC, Creighton FM, Engelhard HH. An in vitro Model System for Evaluating Remote Magnetic Nanoparticle Movement and Fibrinolysis. Int J Nanomedicine 2020; 15:1549-1568. [PMID: 32210551 PMCID: PMC7071866 DOI: 10.2147/ijn.s237395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background Thrombotic events continue to be a major cause of morbidity and mortality worldwide. Tissue plasminogen activator (tPA) is used for the treatment of acute ischemic stroke and other thrombotic disorders. Use of tPA is limited by its narrow therapeutic time window, hemorrhagic complications, and insufficient delivery to the location of the thrombus. Magnetic nanoparticles (MNPs) have been proposed for targeting tPA delivery. It would be advantageous to develop an improved in vitro model of clot formation, to screen thrombolytic therapies that could be enhanced by addition of MNPs, and to test magnetic drug targeting at human-sized distances. Methods We utilized commercially available blood and endothelial cells to construct 1/8th inch (and larger) biomimetic vascular channels in acrylic trays. MNP clusters were moved at a distance by a rotating permanent magnet and moved along the channels by surface walking. The effect of different transport media on MNP velocity was studied using video photography. MNPs with and without tPA were analyzed to determine their velocities in the channels, and their fibrinolytic effect in wells and the trays. Results MNP clusters could be moved through fluids including blood, at human-sized distances, down straight or branched channels, using the rotating permanent magnet. The greatest MNP velocity was closest to the magnet: 0.76 ± 0.03 cm/sec. In serum, the average MNP velocity was 0.10 ± 0.02 cm/sec. MNPs were found to enhance tPA delivery, and cause fibrinolysis in both static and dynamic studies. Fibrinolysis was observed to occur in 85% of the dynamic MNP + tPA experiments. Conclusion MNPs hold great promise for use in augmenting delivery of tPA for the treatment of stroke and other thrombotic conditions. This model system facilitates side by side comparisons of MNP-facilitated drug delivery, at a human scale.
Collapse
Affiliation(s)
- Sebastian P Pernal
- The Cancer Center, The University of Illinois at Chicago, Chicago, IL, USA.,Department of Neurosurgery, The University of Illinois at Chicago, Chicago, IL, USA
| | - Alexander J Willis
- The Cancer Center, The University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Steven T Olson
- Department of Periodontics, The University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Herbert H Engelhard
- The Cancer Center, The University of Illinois at Chicago, Chicago, IL, USA.,Department of Neurosurgery, The University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Performance of PEGylated chitosan and poly (L-lactic acid-co-ε-caprolactone) bilayer vascular grafts in a canine femoral artery model. Colloids Surf B Biointerfaces 2020; 188:110806. [PMID: 31978698 DOI: 10.1016/j.colsurfb.2020.110806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/22/2023]
Abstract
The fabrication of a functional small-diameter vascular graft with good biocompatibility, in particular hemocompatibility, has become an urgent clinical necessity. We fabricated a native bilayer, small-diameter vascular graft using PEGylated chitosan (PEG-CS) and poly (L-lactic acid-co-ε-caprolactone; PLCL). To stabilize the inner layer, a PEG-CS blend with PLCL at ratio of 1:6 was casted on a round metal bar by a drip feed, and the outer layer, a PLCL blend with water-soluble PEG that acted as a sacrificial part to enhance pore size, was fabricated by electrospinning. The results showed excellent hemocompatibility and strong mechanical properties. In vitro, the degradation of the graft was evaluated by measuring the graft structure, mass loss rate, and changes in molecular weight. The results indicated that the graft had adequate support for the regeneration of blood vessels before collapse. An in vivo study was performed in a canine femoral artery model for up to 24 weeks, which demonstrated that the PEGylated bilayer grafts possessed excellent structural integrity, high compatibility with blood, good endothelial cell (EC) and smooth muscle cell (SMC) growth, and high expression levels of angiogenesis-related proteins, features that are highly similar to autologous blood vessels. Moreover, the results showed almost negligible calcification within 24 weeks. These findings confirm that the bilayer graft mimics native cells, thereby effectively improving vascular remodeling.
Collapse
|
14
|
Pang Y, Sutoko S, Wang Z, Horimoto Y, Montagne K, Horiguchi I, Shinohara M, Danoy M, Niino T, Sakai Y. Organization of liver organoids using Raschig ring-like micro-scaffolds and triple co-culture: Toward modular assembly-based scalable liver tissue engineering. Med Eng Phys 2019; 76:69-78. [PMID: 31883633 DOI: 10.1016/j.medengphy.2019.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/26/2022]
Abstract
In order to address the remaining issues of fragile structure and insufficient mass transfer faced in modular assembly-based liver tissue engineering, a Raschig ring-like hollowed micro-scaffold was proposed and fabricated using poly-ε-caprolactone with 60% porosity and 11.4 mm2 effective surface area for cell immobilization. The method of cell inoculation, the types of cells for co-culture and the scalability of the proposed hollowed micro-scaffold in perfusion were all investigated to obtain an optimized organoid made of tissue modules. Extracellular matrix was found necessary to establish a hierarchical co-culture, and the triple co-culture of Human Hepatoma Hep G2 cells, liver sinusoid cell line TMNK-1 cells and fibroblasts (Swiss 3T3 cells) was recognized to be the most efficient to obtain higher cell attachment, proliferation and hepatic function. The equipped intersecting hollow channels provided in the micro-scaffold functioned as flow paths to promote mass transfer to the immobilized cells after the modules have been randomly packed into a bioreactor for perfusion culture, and resulted in enhanced albumin production and high cellular viability. Cell density comparable to those found in vivo were obtained in the perfused construct, which also maintained its rigid structure. Those results suggest that modular tissues made with hollowed micro-scaffold-based organoids hold great potential for scaling up tissue engineered constructs towards implantation.
Collapse
Affiliation(s)
- Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Room A730, Lee Shau Kee science and Technology Building Haidian District, Beijing 100084, China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China.
| | - Stephanie Sutoko
- Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Zitong Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yohei Horimoto
- Graduate School of Engineering, Shibaura Institute of Technology, Shibaura 3-9-14, Minato-ku, Tokyo 108-8548, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-033, Japan
| | - Ikki Horiguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | - Marie Shinohara
- Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Mathieu Danoy
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-033, Japan
| | - Toshiki Niino
- Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-033, Japan
| |
Collapse
|
15
|
Tresoldi C, Pacheco DP, Formenti E, Pellegata AF, Mantero S, Petrini P. Shear-resistant hydrogels to control permeability of porous tubular scaffolds in vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110035. [PMID: 31546369 DOI: 10.1016/j.msec.2019.110035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Aiming to perfuse porous tubular scaffolds for vascular tissue engineering (VTE) with controlled flow rate, prevention of leakage through the scaffold lumen is required. A gel coating made of 8% w/v alginate and 6% w/v gelatin functionalized with fibronectin was produced using a custom-made bioreactor-based method. Different volumetric proportions of alginate and gelatin were tested (50/50, 70/30, and 90/10). Gel swelling and stability, and rheological, and uniaxial tensile tests reveal superior resistance to the aggressive biochemical microenvironment, and their ability to withstand physiological deformations (~10%) and wall shear stresses (5-20 dyne/cm2). These are prerequisites to maintain the physiologic phenotypes of vascular smooth muscle cells and endothelial cells (ECs), mimicking blood vessels microenvironment. Gels can induce ECs proliferation and colonization, especially in the presence of fibronectin and higher percentages of gelatin. The custom-designed bioreactor enables the development of reproducible and homogeneous tubular gel coating. The permeability tests show the effectiveness of tubular scaffolds coated with 70/30 alginate/gelatin gel to occlude wadding pores, and therefore prevent leakages. The synthesized double-layered tubular scaffolds coated with alginate/gelatin gel and fibronectin represent both promising substrate for ECs and effective leakproof scaffolds, when subjected to pulsatile perfusion, for VTE applications.
Collapse
Affiliation(s)
- Claudia Tresoldi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Daniela P Pacheco
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Elisa Formenti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Alessandro Filippo Pellegata
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Sara Mantero
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy.
| | - Paola Petrini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| |
Collapse
|
16
|
Rong M, Ma S, Lin P, Cai M, Zheng Z, Zhou F. Polymerization induced phase separation as a generalized methodology for multi-layered hydrogel tubes. J Mater Chem B 2019. [DOI: 10.1039/c9tb00185a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a conceptually chemical strategy to facilitate the fabrication of layered hydrogel tubes based on the polymerization-induced phase separation mechanism.
Collapse
Affiliation(s)
- Mingming Rong
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Peng Lin
- Anhui University of Technology
- MaAnshan
- China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Zijian Zheng
- The Hong Kong Polytechnic University
- Hong Kong SAR
- China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| |
Collapse
|
17
|
Ouyang L, Burdick JA, Sun W. Facile Biofabrication of Heterogeneous Multilayer Tubular Hydrogels by Fast Diffusion-Induced Gelation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12424-12430. [PMID: 29582989 DOI: 10.1021/acsami.7b19537] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multilayer (ML) hydrogels are useful to achieve stepwise and heterogeneous control over the organization of biomedical materials and cells. There are numerous challenges in the development of fabrication approaches toward this, including the need for mild processing conditions that maintain the integrity of embedded compounds and the versatility in processing to introduce desired complexity. Here, we report a method to fabricate heterogeneous multilayered hydrogels based on diffusion-induced gelation. This technique uses the quick diffusion of ions and small molecules (i.e., photoinitiators) through gel-sol or gel-gel interfaces to produce hydrogel layers. Specifically, ionically (e.g., alginate-based) and covalently [e.g., gelatin methacryloyl (GelMA-based)] photocross-linked hydrogels are generated in converse directions from the same interface. The ML (e.g., seven layers) ionic hydrogels can be formed within seconds to minutes with thicknesses ranging from tens to hundreds of micrometers. The thicknesses of the covalent hydrogels are determined by the reaction time (or the molecule diffusion time). Multiwalled tubular structures (e.g., mimicking branched multiwalled vessels) are mainly investigated in this study based on a removable gel core, but this method can be generalized to other material patterns. The process is also demonstrated to support the encapsulation of viable cells and is compatible with a range of thermally reversible core materials (e.g., gelatin and Pluronic F127) and covalently cross-linked formulations (e.g., GelMA and methacrylated hyaluronic acid). This biofabrication process enhances our ability to fabricate a range of structures that are useful for biomedical applications.
Collapse
Affiliation(s)
- Liliang Ouyang
- Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Jason A Burdick
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Wei Sun
- Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
- Department of Mechanical Engineering and Mechanics , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
18
|
Small Diameter Blood Vessels Bioengineered From Human Adipose-derived Stem Cells. Sci Rep 2016; 6:35422. [PMID: 27739487 PMCID: PMC5064394 DOI: 10.1038/srep35422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
Bioengineering of small-diameter blood vessels offers a promising approach to reduce the morbidity associated with coronary artery and peripheral vascular disease. The aim of this study was to construct a two-layered small-diameter blood vessel using smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from human adipose-derived stem cells (hASCs). The outer layer was constructed with biodegradable polycaprolactone (PCL)-gelatin mesh seeded with SMCs, and this complex was then rolled around a silicone tube under pulsatile stimulation. After incubation for 6 to 8 weeks, the PCL-gelatin degraded and the luminal supporting silicone tube was removed. The smooth muscle layer was subsequently lined with ECs differentiated from hASCs after stimulation with VEGF and BMP4 in combination hypoxia. The phenotype of differentiated SMCs and ECs, and the cytotoxicity of the scaffold and biomechanical assessment were analyzed. Our results demonstrated that the two-layered bioengineered vessels exhibited biomechanical properties similar to normal human saphenous veins (HSV). Therefore, hASCs provide SMCs and ECs for bioengineering of small-diameter blood vessels.
Collapse
|
19
|
Kinoshita K, Iwase M, Yamada M, Yajima Y, Seki M. Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnol J 2016; 11:1415-1423. [DOI: 10.1002/biot.201600083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Keita Kinoshita
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Masaki Iwase
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Yuya Yajima
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering; Chiba Japan
| |
Collapse
|
20
|
Aziz AH, Wahlquist J, Sollner A, Ferguson V, DelRio FW, Bryant SJ. Mechanical characterization of sequentially layered photo-clickable thiol-ene hydrogels. J Mech Behav Biomed Mater 2016; 65:454-465. [PMID: 27664813 DOI: 10.1016/j.jmbbm.2016.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 12/31/2022]
Abstract
Multi-layer hydrogels are promising for tissue engineering due to the ability to control the local properties within each layer. However, the interface that forms between each layer has the potential to affect the performance of the hydrogel. The goals of this study were to characterize how the interface forms via its thickness and mechanical properties, identify its impact on the overall hydrogel properties, and provide new insights into how to control the interface. A photo-clickable poly(ethylene glycol) hydrogel was used to form bilayer hydrogels that were sequentially polymerized in a step-and-repeat process. Different processing conditions were studied: the time (0-20min) before initiating polymerization of the second layer (soak time, ts) and the hydrogel crosslink density (the same, less crosslinked, or more crosslinked) of the first layer as compared to the second layer. Interface thickness was characterized by confocal microscopy, monomer transport by Fickian diffusion, single and bilayer hydrogel mechanics by bulk moduli measurements, and interface moduli measurements using AFM, nanoindentation, and strain mapping. The interface thickness ranged from ~70 to 600μm (1-10% of total height) depending on processing conditions, but did not affect the bulk hydrogel modulus. Analysis of monomer transport revealed that convection, due to changes in hydrogel swelling, and diffusion contribute to interface thickness. Nanomechanical analysis of bilayer hydrogels formed from soft (75kPa) and stiff (250kPa) layers showed a gradient in elastic modulus across the interface, which corresponded to strain maps. In summary, this work identifies that diffusive and convective transport of monomers across the interface controls its thickness and that a mechanically robust interface forms, which does not affect the hydrogel modulus. By controlling the processing conditions, the thickness of the interface can be tuned without affecting the mechanical properties of the bulk hydrogel.
Collapse
Affiliation(s)
- Aaron H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Joseph Wahlquist
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Aaron Sollner
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO 80309, USA
| | - Virginia Ferguson
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Material Science & Engineering Program, University of Colorado, Boulder, CO, USA
| | - Frank W DelRio
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Material Science & Engineering Program, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
21
|
Tan A, Fujisawa K, Yukawa Y, Matsunaga YT. Bottom-up fabrication of artery-mimicking tubular co-cultures in collagen-based microchannel scaffolds. Biomater Sci 2016; 4:1503-14. [PMID: 27549872 DOI: 10.1039/c6bm00340k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed a robust bottom-up approach to construct open-ended, tubular co-culture constructs that simulate the human vascular morphology and microenvironment. By design, these three-dimensional artificial vessels mimic the basic architecture of an artery: a collagen-rich extracellular matrix (as the tunica externa), smooth muscle cells (SMCs) (as the tunica media), and an endothelial cell (EC) lining (as the tunica interna). A versatile needle-based fabrication technique was employed to achieve controllable arterial layouts within a PDMS-hosted collagen microchannel scaffold (330 ± 10 μm in diameter): (direct co-culture) a SMC/EC bilayer to follow the structure of an arteriole-like segment; and (encapsulated co-culture) a lateral SMC multilayer covered by an EC monolayer lining to simulate the architecture of a larger artery. Optical and fluorescence microscopy images clearly evidenced the progressive cell elongation and sprouting behavior of SMCs and ECs along the collagen gel contour and within the gel matrix under static co-culture conditions. The progressive cell growth patterns effectively led to the formation of a tubular co-culture with an internal endothelial lining expressing prominent CD31 (cluster of differentiation 31) intercellular junction markers. During a 4-day static maturation period, the artery constructs showed modest alteration in the luminal diameters (i.e. less than 10% changes from the initial measurements). This argues in favor of stable and predictable arterial architecture achieved via the proposed fabrication protocols. Both co-culture models showed a high glucose metabolic rate during the initial proliferation phase, followed by a temporary quiescent (and thus, mature) stage. These proof-of-concept models with a controllable architecture create an important foundation for advanced vessel manipulations such as the integration of relevant physiological functionality or remodeling into a vascular disease-mimicking tissue.
Collapse
Affiliation(s)
- A Tan
- Centre for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
22
|
Zou T, Fan J, Fartash A, Liu H, Fan Y. Cell-based strategies for vascular regeneration. J Biomed Mater Res A 2016; 104:1297-314. [PMID: 26864677 DOI: 10.1002/jbm.a.35660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ.
Collapse
Affiliation(s)
- Tongqiang Zou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Armita Fartash
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
23
|
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1168-1180. [DOI: 10.1016/j.msec.2015.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/04/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
|
24
|
Lukas K, Thomas U, Gessner A, Wehner D, Schmid T, Schmid C, Lehle K. Plasma functionalization of polycarbonaturethane to improve endothelialization—Effect of shear stress as a critical factor for biocompatibility control. J Biomater Appl 2016; 30:1417-28. [DOI: 10.1177/0885328215626072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts.
Collapse
Affiliation(s)
- Karin Lukas
- IMHR, Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - André Gessner
- IMHR, Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | | | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Wu T, Huang C, Li D, Yin A, Liu W, Wang J, Chen J, Ei-Hamshary H, Al-Deyab SS, Mo X. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids Surf B Biointerfaces 2015; 133:179-88. [PMID: 26101818 DOI: 10.1016/j.colsurfb.2015.05.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/02/2015] [Accepted: 05/29/2015] [Indexed: 01/30/2023]
Abstract
Multi-layered scaffolds are advantageous in vascular tissue engineering, in consideration of better combination of biomechanics, biocompatibility and biodegradability than the scaffolds with single structure. In this study, a bi-directional gradient electrospinning method was developed to fabricate poly(l-lactide-co-caprolactone) (P(LLA-CL)), collagen and chitosan based tubular scaffold with multi-layered symmetrical structure. The multi-layered composite scaffold showed improved mechanical property and biocompatibility, in comparison to the blended scaffold using the same proportion of raw materials. Endothelialization on the multi-layered scaffold was accelerated owing to the bioactive surface made of pure natural materials. hSMCs growth showed the similar results because of its better biocompatibility. Additionally, fibers morphology change, pH value balance and long term mechanical support results showed that the gradient structure effectively improved biodegradability.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Chen Huang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Dawei Li
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Anlin Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Liu
- College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jianfeng Chen
- College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hany Ei-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Salem S Al-Deyab
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; College of Material Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
26
|
Oh B, Melchert RB, Lee CH. Biomimicking Robust Hydrogel for the Mesenchymal Stem Cell Carrier. Pharm Res 2015; 32:3213-27. [PMID: 25911596 DOI: 10.1007/s11095-015-1698-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/14/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE This study was aimed to develop a hydrogel-nanofiber as an advanced carrier for adipose derived human mesenchymal stem cells (AD-MSCs) and evaluate its potential for immunomodulatory therapies applicable to surface coating of drug eluting stent (DES) against coronary artery diseases (CAD). METHODS A mixture of dispersing-nanofibers (dNFs) and poly (ethylene glycol)-diacrylate (PEGDA) were blended with sodium alginate to achieve robust mechanical strength. The effects of stem cell niche on cell viability and proliferation rates were evaluated using LDH assay and alamar blue assay, respectively. The amount of Nile-red microparticles (NR-MPs) remained in the hydrogel scaffolds was examined as an index for the physical strength of hydrogels. To evaluate the immunomodulatory activity of AD-MSCs as well as their influence by ROS, the level of L-Kynurenine was determined as tryptophan replacement compounds in parallel with IDO secreted from AD-MSCs using a colorimetric assay of L-amino acid. RESULTS Both SA-cys-PEG and SA-cys-dNF-PEG upon being coated on stents using electrophoretic deposition technique displayed superior mechanical properties against the perfused flow. d-NFs had a significant impact on the stability of SA-cys-dNF-PEG, as evidenced by the substantial amount of NR-MPs remained in them. An enhanced subcellular level of ROS by spheroidal cluster yielded the high concentrations of L-Kynurenine (1.67 ± 0.6 μM without H2O2, 5.2 ± 1.14 μM with 50 μM of H2O2 and 8.8 ± 0.51 μM with 100 μM of H2O2), supporting the IDO-mediated tryptophan replacement process. CONCLUSION The "mud-and-straw" hydrogels are robust in mechanical property and can serve as an ideal niche for AD-MSCs with immunomodulatory effects.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Russell B Melchert
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Chi H Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA. .,Division of Pharmaceutical Sciences, University of Missouri at Kansas City, 2464 Charlotte Street, HSB-4242, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
27
|
Wu T, Jiang B, Wang Y, Yin A, Huang C, Wang S, Mo X. Electrospun poly(l-lactide-co-caprolactone)–collagen–chitosan vascular graft in a canine femoral artery model. J Mater Chem B 2015; 3:5760-5768. [DOI: 10.1039/c5tb00599j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(P(LLA-CL)–COL–CS) composite vascular grafts could effectively improve patency rate, promote tissue regeneration, and enhance gene expression.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Bojie Jiang
- Department of Emergency and Critical Care Medicine
- Shanghai Tenth People's Hospital
- Tongji University
- Shanghai 200072
- China
| | - Yuanfei Wang
- State Key Laboratory of Bioreactor Engineering
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Anlin Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Chen Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Sheng Wang
- Department of Emergency and Critical Care Medicine
- Shanghai Tenth People's Hospital
- Tongji University
- Shanghai 200072
- China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
28
|
Hunt JA, Chen R, van Veen T, Bryan N. Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2014; 2:5319-5338. [DOI: 10.1039/c4tb00775a] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Injectable hydrogels have become an incredibly prolific area of research in the field of tissue engineering and regenerative medicine, because of their high water content, mechanical similarity to natural tissues, and ease of surgical implantation, hydrogels are at the forefront of biomedical scaffold and drug carrier design.
Collapse
Affiliation(s)
- John A. Hunt
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| | - Rui Chen
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| | - Theun van Veen
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| | - Nicholas Bryan
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| |
Collapse
|