1
|
Siddika MA, Oi H, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Structural Expansion of Catalytic RNA Nanostructures through Oligomerization of a Cyclic Trimer of Engineered Ribozymes. Molecules 2023; 28:6465. [PMID: 37764241 PMCID: PMC10535472 DOI: 10.3390/molecules28186465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The multimolecular assembly of three-dimensionally structured proteins forms their quaternary structures, some of which have high geometric symmetry. The size and complexity of protein quaternary structures often increase in a hierarchical manner, with simpler, smaller structures serving as units for larger quaternary structures. In this study, we exploited oligomerization of a ribozyme cyclic trimer to achieve larger ribozyme-based RNA assembly. By installing kissing loop (KL) interacting units to one-, two-, or three-unit RNA molecules in the ribozyme trimer, we constructed dimers, open-chain oligomers, and branched oligomers of ribozyme trimer units. One type of open-chain oligomer preferentially formed a closed tetramer containing 12 component RNAs to provide 12 ribozyme units. We also observed large assembly of ribozyme trimers, which reached 1000 nm in size.
Collapse
Affiliation(s)
- Mst. Ayesha Siddika
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
| | - Hiroki Oi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8501, Kyoto, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita 564-8680, Osaka, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Yoshiya Ikawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| |
Collapse
|
2
|
Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers. J Biosci Bioeng 2022; 134:195-202. [PMID: 35810135 DOI: 10.1016/j.jbiosc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Naturally occurring ribozymes with defined three-dimensional (3D) structures serve as promising platforms for the design and construction of artificial RNA nanostructures. We constructed a hexameric ribozyme nanostructure by face-to-face dimerization of a pair of triangular ribozyme trimers, unit RNAs of which were derived from the Tetrahymena group I ribozyme. In this study, we have expanded the dimerization strategy to a square-shaped ribozyme tetramer by introducing four pillar units. The resulting box-shaped nanostructures, which contained eight ribozyme units, can be assembled from either four or two components of their unit RNAs.
Collapse
|
3
|
Mori Y, Oi H, Suzuki Y, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Flexible Assembly of Engineered Tetrahymena Ribozymes Forming Polygonal RNA Nanostructures with Catalytic Ability. Chembiochem 2021; 22:2168-2176. [PMID: 33876531 DOI: 10.1002/cbic.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Indexed: 11/11/2022]
Abstract
Ribozymes with modular architecture constitute an attractive class of structural platforms for design and construction of nucleic acid nanostructures with biological functions. Through modular engineering of the Tetrahymena ribozyme, we have designed unit RNAs (L-RNAs), assembly of which formed ribozyme-based closed trimers and closed tetramers. Their catalytic activity was dependent on oligomer formation. In this study, the structural variety of L-RNA oligomers was extended by tuning their structural elements, yielding closed pentamers and closed hexamers. Their assembly properties were analyzed by electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Yuki Mori
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Hiroki Oi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, 606-8502, Kyoto, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| |
Collapse
|
4
|
An RNA Triangle with Six Ribozyme Units Can Promote a Trans-Splicing Reaction through Trimerization of Unit Ribozyme Dimers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribozymes are catalytic RNAs that are attractive platforms for the construction of nanoscale objects with biological functions. We designed a dimeric form of the Tetrahymena group I ribozyme as a unit structure in which two ribozymes were connected in a tail-to-tail manner with a linker element. We introduced a kink-turn motif as a bent linker element of the ribozyme dimer to design a closed trimer with a triangular shape. The oligomeric states of the resulting ribozyme dimers (kUrds) were analyzed biochemically and observed directly by atomic force microscopy (AFM). Formation of kUrd oligomers also triggered trans-splicing reactions, which could be monitored with a reporter system to yield a fluorescent RNA aptamer as the trans-splicing product.
Collapse
|
5
|
Kiyooka R, Akagi J, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures. J Biosci Bioeng 2020; 130:253-259. [PMID: 32451246 DOI: 10.1016/j.jbiosc.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Ribozymes with modular structures are attractive platforms for the construction of nanoscale RNA objects with biological functions. We designed group I ribozyme dimers as unit ribozyme dimers (Urds), which self-assembled to form their polymeric states and also oligomeric states with defined numbers of Urds. Assembly of Urds yielded catalytic ability of a pair of distinct ribozyme units to cleave two distinct substrates. The morphologies of the assembled ribozyme structures were observed directly by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Ryuji Kiyooka
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Junya Akagi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
6
|
Rahman MS, Gulshan MA, Matsumura S, Ikawa Y. Polyethylene glycol molecular crowders enhance the catalytic ability of bimolecular bacterial RNase P ribozymes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:715-729. [PMID: 32039645 DOI: 10.1080/15257770.2019.1687909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The modular structure of bacterial ribonuclease P (RNase P) ribozymes, which recognize tertiary structures of precursor tRNAs (pre-tRNAs) to cleave their 5' leader sequence, can be dissected physically into the two structured domain RNAs (S-domain and C-domain). Separately prepared S-domain RNA and C-domain RNA assemble to form bimolecular forms of RNase P ribozymes. We analyzed the effects of polyethylene glycols (PEGs) on pre-tRNA cleavage catalyzed by bimolecular RNase P ribozymes to examine the effects of molecular crowding on the reaction. PEG molecular crowders significantly enhanced the activities of bimolecular RNase P ribozymes, some of which were hardly active without PEGs.
Collapse
Affiliation(s)
- Md Sohanur Rahman
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Mst Ara Gulshan
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| |
Collapse
|
7
|
Tsuruga R, Uehara N, Suzuki Y, Furuta H, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA–RNA interface between two structural modules. J Biosci Bioeng 2019; 128:410-415. [DOI: 10.1016/j.jbiosc.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
|
8
|
Artificial RNA Motifs Expand the Programmable Assembly between RNA Modules of a Bimolecular Ribozyme Leading to Application to RNA Nanostructure Design. BIOLOGY 2017; 6:biology6040037. [PMID: 29084145 PMCID: PMC5745442 DOI: 10.3390/biology6040037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 01/10/2023]
Abstract
A bimolecular ribozyme consisting of a core ribozyme (ΔP5 RNA) and an activator module (P5abc RNA) has been used as a platform to design assembled RNA nanostructures. The tight and specific assembly between the P5abc and ΔP5 modules depends on two sets of intermodule interactions. The interface between P5abc and ΔP5 must be controlled when designing RNA nanostructures. To expand the repertoire of molecular recognition in the P5abc/ΔP5 interface, we modified the interface by replacing the parent tertiary interactions in the interface with artificial interactions. The engineered P5abc/ΔP5 interfaces were characterized biochemically to identify those suitable for nanostructure design. The new interfaces were used to construct 2D-square and 1D-array RNA nanostructures.
Collapse
|
9
|
Tanaka T, Matsumura S, Furuta H, Ikawa Y. Tecto-GIRz: Engineered Group I Ribozyme the Catalytic Ability of Which Can Be Controlled by Self-Dimerization. Chembiochem 2016; 17:1448-55. [DOI: 10.1002/cbic.201600190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Takahiro Tanaka
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Kyushu University; Moto-oka 744 Nishi-ku Fukuoka 819-0395 Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry; Graduate School of Science and Engineering; University of Toyama; Gofuku 3190 Toyama 930-8555 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Kyushu University; Moto-oka 744 Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiya Ikawa
- Department of Chemistry; Graduate School of Science and Engineering; University of Toyama; Gofuku 3190 Toyama 930-8555 Japan
| |
Collapse
|