1
|
Yue JR, Liu YJ, Yuan SH, Sun H, Lou HY, Li YM, Guo HY, Liu ZH, Zhang FT, Zhai N, Zhang SQ, Bai JF, Zhang LP. Uncovering seed vigor responsive miRNA in hybrid wheat and its parents by deep sequencing. BMC Genomics 2024; 25:991. [PMID: 39438825 PMCID: PMC11515737 DOI: 10.1186/s12864-024-10878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Two-line hybrid wheat technology system is one way to harness wheat heterosis both domestically and internationally. Seed vigor is a crucial parameter for assessing seed quality, as enhanced seed vigor can lead to yield increments of over 20% to a certain extent. MicroRNAs (miRNAs) were known to participate in the development and vigor of seed in plants, but its impact on seed vigor in two-line hybrid wheat remains poorly elucidated. RESULTS The hybrid (BS1453/11GF5135) wheat exhibited superiority in seed vigor and anti-aging capacity, compared to its male parent (11GF5135, MP) and female parent (BS1453, FP). We identified four miRNAs associated with seed vigor, all of which are novel miRNAs. The majority of targets of miRNAs were related to ubiquitin ligases, kinases, sucrose synthases and hydrolases, involving in starch and sucrose metabolism, hydrolysis, catalysis, plant hormone signal transduction, and other pathways, which played crucial roles in seed development. Additionally, we also found miR531 was differentially expressed in both male parent and hybrid, and its target gene was a component of the E1 subunit of α-ketoate dehydrogenase complex, which interacted with dihydrolipoamide acetyltransferase (E2) and dihydrolipoyl dehydrogenase (E3). Finally, We established a presumptive interaction model to speculate the relationship of miR531 and seed vigor. CONCLUSIONS This study analyzed the seed vigor of two-line hybrid wheat, and screened seed vigor-related miRNAs. Meanwhile speculated the genetic relationship of hybrid and parents, in terms of miRNAs. Consequently, the present study provides new insights into the miRNA-mediated gene and protein interaction network that regulates seed vigor. These findings hold significance for enhancing the yield and quality of two-line hybrid wheat, facilitating its future applications.
Collapse
Affiliation(s)
- Jie-Ru Yue
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yong-Jie Liu
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shao-Hua Yuan
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Sun
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hong-Yao Lou
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yan-Mei Li
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hao-Yu Guo
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zi-Han Liu
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng-Ting Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Nuo Zhai
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Sheng-Quan Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jian-Fang Bai
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Li-Ping Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
2
|
Guo B, Sun L, Jiang S, Ren H, Sun R, Wei Z, Hong H, Luan X, Wang J, Wang X, Xu D, Li W, Guo C, Qiu LJ. Soybean genetic resources contributing to sustainable protein production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4095-4121. [PMID: 36239765 PMCID: PMC9561314 DOI: 10.1007/s00122-022-04222-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Genetic resources contributes to the sustainable protein production in soybean. Soybean is an important crop for food, oil, and forage and is the main source of edible vegetable oil and vegetable protein. It plays an important role in maintaining balanced dietary nutrients for human health. The soybean protein content is a quantitative trait mainly controlled by gene additive effects and is usually negatively correlated with agronomic traits such as the oil content and yield. The selection of soybean varieties with high protein content and high yield to secure sustainable protein production is one of the difficulties in soybean breeding. The abundant genetic variation of soybean germplasm resources is the basis for overcoming the obstacles in breeding for soybean varieties with high yield and high protein content. Soybean has been cultivated for more than 5000 years and has spread from China to other parts of the world. The rich genetic resources play an important role in promoting the sustainable production of soybean protein worldwide. In this paper, the origin and spread of soybean and the current status of soybean production are reviewed; the genetic characteristics of soybean protein and the distribution of resources are expounded based on phenotypes; the discovery of soybean seed protein-related genes as well as transcriptomic, metabolomic, and proteomic studies in soybean are elaborated; the creation and utilization of high-protein germplasm resources are introduced; and the prospect of high-protein soybean breeding is described.
Collapse
Affiliation(s)
- Bingfu Guo
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Sun
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Siqi Jiang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rujian Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyan Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Xiaoyan Luan
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jun Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Donghe Xu
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Czubinski J. Influence of temperature on secretion and functionality of lupin seed γ-conglutin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2773-2782. [PMID: 34719791 DOI: 10.1002/jsfa.11618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Basic 7S globulins, a group of proteins commonly found in legumes, undergo the intriguing phenomenon of release from the seeds into hot water. γ-Conglutin is a representative of this group of proteins found in lupin seeds. The physiological significance and the molecular mechanism of the selective release of γ-conglutin from lupin seeds remain unknown. Therefore, the presented study aimed to determine changes in the functionality of this protein in response to the high temperature occurring during lupin seed incubation. RESULTS It was confirmed that the main protein fraction released from the seeds during high-temperature incubation was γ-conglutin. The incubation condition favours the occurrence of this protein in a monomeric form, and the temperature used corresponds to its midpoint unfolding temperature. Subsequent analysis carried out on the γ-conglutin monomer revealed changes in its functionality after heat shock. The thermally treated protein shows a considerable increase in its interaction strength with flavonoids. Moreover, the inhibitory activity against glycoside hydrolases was enhanced when γ-conglutin monomer was exposed to specific temperatures. CONCLUSION The results of the present study provide a potential explanation of the physiological relevance of γ-conglutin and shed new light on a possible mechanism of its activation upon specific heat treatment. This knowledge will help characterise homologous proteins, which are commonly found in other legumes and undergo a similar heat-induced secretion phenomenon. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jaroslaw Czubinski
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego, Poland
| |
Collapse
|
4
|
Liu X, Fu Y, Wang J, Wu D, Li S, Wang C, Yang Z, Zhou E. β-Conglycinin induces the formation of neutrophil extracellular traps dependent on NADPH oxidase-derived ROS, PAD4, ERK1/2 and p38 signaling pathways in mice. Food Funct 2020; 12:154-161. [PMID: 33289753 DOI: 10.1039/d0fo02337j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Conglycinin is one of the key thermostable anti-nutritional factors in soybean, which has strong immunogenicity that usually leads to weaning in some young animals such as piglets and calves and allergic reaction in rats. Neutrophils are involved in the pathogenesis of an allergy. However, the contribution of functional neutrophils to allergy needs to be clarified. The formation of neutrophil extracellular traps is a novel effector mechanism of neutrophils and has been extensively investigated in recent years. To the best of our knowledge, there is no information available on β-conglycinin-induced NETs. In this study, β-conglycinin-induced NET formation in mice was examined via immunofluorescence analysis and fluorescence microplate reader. The mechanism of β-conglycinin-induced NETs was investigated using inhibitors and fluorescent microplate methods. The results showed that β-conglycinin induced the classical characteristics of NETs, which mainly consist of DNA as the backbone and decorated with histones, myeloperoxidase (MPO) and neutrophil elastase (NE). Moreover, β-conglycinin significantly induced the formation of NETs in a dose-dependent way. NET degrading enzyme DNase I markedly reduced β-conglycinin-induced NETs, which suggests that β-conglycinin indeed triggered the release of NETs. Further investigation showed that the quantitation of NETs was markedly decreased by the inhibitors of reactive oxygen species (ROS)-derived-NADPH oxidase, ERK1/2, p38, Rac and PAD4 signaling pathways, indicating the crucial role of these signaling pathways in β-conglycinin-induced NETs. Furthermore, our findings revealed that β-conglycinin induced the formation of NETs, which is dependent on NADPH oxidase-derived ROS, ERK1/2, p38, Rac and PAD4 signaling pathways. This study is the first to demonstrate the underlying mechanisms of β-conglycinin-induced NET formation, and it could be helpful to understand diarrhea caused by β-conglycinin overexposure in young animals and provides the corresponding theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Xiao Liu
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China and College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China and College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China
| | - Chaoqun Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| |
Collapse
|
5
|
Li X, Liu X, Hua Y, Chen Y, Kong X, Zhang C. Effects of water absorption of soybean seed on the quality of soymilk and the release of flavor compounds. RSC Adv 2019; 9:2906-2918. [PMID: 35518963 PMCID: PMC9059926 DOI: 10.1039/c8ra08029a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/08/2019] [Indexed: 11/26/2022] Open
Abstract
The water absorption of soybeans during soaking is directly related to the quality characteristics and the flavor properties of soybeans for processing. In this paper, the effects of water absorption of soybean seed on the quality of soymilk and the release of flavor compounds were investigated during soaking at 4 °C, 25 °C, and 50 °C at different pH values. The results showed that the water absorption rate increased as the soaking temperature and pH increased, while the equilibrium value was relatively stable. Peleg's equation with good fitting of the absorption kinetics was used to predict the hydration characteristics of undehulled soybean. MALDI-TOF/TOF-MS results showed that the major released proteins are basic 7S globulin, which is released in large amounts at high temperature. The water absorption of soybean seed significantly enhanced the extraction yields of protein, fat and solids of the prepared soymilk, and alkaline soaking pH further promoted the extraction of proteins and solids. A high soaking temperature can significantly decrease the required soaking time; however, it is unfavorable to the extraction yields of fat, proteins and solids, as well as the whiteness values and the particle sizes. The beany odor compounds of soymilk mainly consisted of hexanal, trans-2-hexenal, 1-octene-3-ol, hexanol, and 2-pentylfuran, and their contents were positively correlated with soaking temperature. A good balance of soymilk quality and flavor compound release can be achieved with soaking conditions of 25 °C and pH 9. The water absorption of soybeans during soaking is directly related to the quality characteristics and the flavor properties of soybeans for processing.![]()
Collapse
Affiliation(s)
- Xingfei Li
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Xu Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|
6
|
Zhang D, Lü H, Chu S, Zhang H, Zhang H, Yang Y, Li H, Yu D. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Sci Rep 2017; 7:5053. [PMID: 28698580 PMCID: PMC5506034 DOI: 10.1038/s41598-017-04685-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/18/2017] [Indexed: 12/03/2022] Open
Abstract
Water-soluble protein content (WSPC) is a critical factor in both soybean protein quality and functionality. However, the underlying genetic determinants are unclear. Here, we used 219 soybean accessions and 152 recombinant inbred lines genotyped with high-density markers and phenotyped in multi-environments to dissect the genetic architectures of WSPC and protein content (PC) using single- and multi-locus genome-wide association studies. In the result, a total of 32 significant loci, including 10 novel loci, significantly associated with WSPC and PC across multi-environments were identified, which were subsequently validated by linkage mapping. Among these loci, only four exhibited pleiotropic effects for PC and WSPC, explaining the low correlation coefficient between the two traits. The largest-effect WSPC-specific loci, GqWSPC8, was stably identified across all six environments and tagged to a linkage disequilibrium block comprising two promising candidate genes AAP8 and 2 S albumin, which might contribute to the high level of WSPC in some soybean varieties. In addition, two genes, Glyma.13G123500 and Glyma.13G194400 with relatively high expression levels at seed development stage compared with other tissues were regarded as promising candidates associated with the PC and WSPC, respectively. Our results provide new insights into the genetic basis of WSPC affecting soybean protein quality and yield.
Collapse
Affiliation(s)
- Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Haiyan Lü
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huairen Zhang
- The Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyan Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|