1
|
Xu L, Liang J, Xu H, Chen Q, Liu J, Luo W, Zhao Z, Wei Z, Chen L. Characterization of a salt-tolerated exo-fructanase from Microbacterium sp. XL1 and its application for high fructose syrup preparation from inulin. Int J Biol Macromol 2024; 282:137288. [PMID: 39510478 DOI: 10.1016/j.ijbiomac.2024.137288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Exo-fructanase enzymes catalyze the hydrolysis of β-2,6 and β-2,1 linkages in levan and inulin fructans, respectively, yielding fructose. In this study, we identified a multidomain exo-fructanase, Mle3A, from Microbacterium sp. XL1. Mle3A is a 124.2 kDa protein comprising a GH32 N-terminal five-bladed β-propeller structure, a GH32 C-terminal β-sandwich module, and a fibronectin type 3 domain. The recombinant enzyme rMle3A exhibited peak activity at temperatures of 50-55 °C and a pH of 5.5, demonstrating hydrolytic capabilities towards levan, inulin, sucrose, and raffinose. The activity of rMle3A on inulin was enhanced in the presence of Mn2+, Ca2+, Ba2+, Sr2+, Co2+, and Mg2+ ions. Notably, 5 mM Mn2+ increased the inulin hydrolytic activity of rMle3A by over 187 %, and the enzyme's activity was unaffected by NaCl concentrations ranging from 0 to 3 M. Purified rMle3A was effectively utilized to produce high fructose syrup from inulin, achieving a maximum fructose concentration of 26.98 g/L and 71.9 % inulin hydrolysis under optimal conditions (85 rpm, 50 °C, pH 5.5) within 2.5 h. This study introduces a new salt-tolerant, multi-ion facilitated fructanase, rMle3A, for the conversion of inulin biomass into high fructose syrup and other high-value chemicals.
Collapse
Affiliation(s)
- Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.
| | - Jing Liang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Jiaqi Liu
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Wei Luo
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Ziyan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| |
Collapse
|
2
|
Lian D, Zhuang S, Shui C, Zheng S, Ma Y, Sun Z, Porras-Domínguez JR, Öner ET, Liang M, Van den Ende W. Characterization of inulolytic enzymes from the Jerusalem artichoke-derived Glutamicibacter mishrai NJAU-1. Appl Microbiol Biotechnol 2022; 106:5525-5538. [PMID: 35896838 DOI: 10.1007/s00253-022-12088-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
The rhizosphere context of inulin-accumulating plants, such as Jerusalem artichoke (Helianthus tuberosus), is an ideal starting basis for the discovery of inulolytic enzymes with potential for bio fructose production. We isolated a Glutamicibacter mishrai NJAU-1 strain from this context, showing exo-inulinase activity, releasing fructose from fructans. The growth conditions (pH 9.0; 15 °C) were adjusted, and the production of inulinase by Glutamicibacter mishrai NJAU-1 increased by 90% (0.32 U/mL). Intriguingly, both levan and inulin, but not fructose and sucrose, induced the production of exo-inulinase activity. Two exo-inulinase genes (inu1 and inu2) were cloned and heterologously expressed in Pichia pastoris. While INU2 preferentially hydrolyzed longer inulins, the smallest fructan 1-kestose appeared as the preferred substrate for INU1, also efficiently degrading nystose and sucrose. Active site docking studies with GFn- and Fn-type small inulins (G is glucose, F is fructose, and n is the number of β (2-1) bound fructose moieties) revealed subtle substrate differences between INU1 and INU2. A possible explanation about substrate specificity and INU's protein structure is then suggested. KEY POINTS: • A Glutamicibacter mishrai strain harbored exo-inulinase activity. • Fructans induced the inulolytic activity in G. mishrai while the inulolytic activity was optimized at pH 9.0 and 15 °C. • Two exo-inulinases with differential substrate specificity were characterized.
Collapse
Affiliation(s)
- Dan Lian
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Zhuang
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chen Shui
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shicheng Zheng
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Zongjiu Sun
- College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang, China
| | - Jaime R Porras-Domínguez
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001, Louvain, Belgium
| | - Ebru Toksoy Öner
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey
| | - Mingxiang Liang
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001, Louvain, Belgium
| |
Collapse
|
3
|
Cen X, Zhang R, He L, Tang X, Wu Q, Zhou J, Huang Z. Deletion of the Loop Linking Two Domains of Exo-Inulinase InuAMN8 Diminished the Enzymatic Thermo-Halo-Alcohol Tolerance. Front Microbiol 2022; 13:924447. [PMID: 35814689 PMCID: PMC9260423 DOI: 10.3389/fmicb.2022.924447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Inulin is the rich water-soluble storage polysaccharide after starch in nature, and utilization of inulin through hydrolysis of exo-inulinases has attracted much attention. Thermo-halo-alcohol tolerance is essential for exo-inulinase applications, while no report reveals the molecular basis involved in halo-alcohol tolerance of exo-inulinases via experimental data. In this study, two loops of exo-inulinase InuAMN8, including the loop built with 360GHVRLGPQP368 linking domains of Glyco_hydro_32N and Glyco_hydro_32C and another loop built with 169GGAG172 in the catalytic domain, were deleted to generate mutants MutG360Δ9 and MutG169Δ4, respectively. After heterologous expression, purification, and dialysis, InuAMN8, MutG169Δ4, and MutG360Δ9 showed half-lives of 144, 151, and 7 min at 50°C, respectively. InuAMN8 and MutG169Δ4 were very stable, while MutG360Δ9 showed a half-life of approximately 60 min in 5.0% (w/v) NaCl, and they showed half-lives of approximately 60 min in 25.0, 25.0, and 5.0% (w/v) ethanol, respectively. Structural analysis indicated that two cation-π bonds, which contributed to thermal properties of InuAMN8 at high temperatures, broke in MutG360Δ9. Four basic amino acid residues were exposed to the structural surface of MutG360Δ9 and formed positive and neutral electrostatic potential that caused detrimental effects on halo-alcohol tolerance. The study may provide a better understanding of the loop-function relationships that are involved in thermo-halo-alcohol adaptation of enzymes in extreme environment.
Collapse
Affiliation(s)
- Xiaolong Cen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
- *Correspondence: Junpei Zhou, ,
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- College of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, China
- Zunxi Huang,
| |
Collapse
|
4
|
He L, Zhang R, Shen J, Miao Y, Zeng C, Tang X, Wu Q, Zhou J, Huang Z. Improving the low-temperature properties of an exo-inulinase via the deletion of a loop fragment located in its catalytic pocket. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Cao L, Zhang R, Zhou J, Huang Z. Biotechnological Aspects of Salt-Tolerant Xylanases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8610-8624. [PMID: 34324332 DOI: 10.1021/acs.jafc.1c03192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-1,4-Xylan is the main component of hemicelluloses in land plant cell walls, whereas β-1,3-xylan is widely found in seaweed cell walls. Complete hydrolysis of xylan requires a series of synergistically acting xylanases. High-saline environments, such as saline-alkali lands and oceans, frequently occur in nature and are also involved in a broad range of various industrial processes. Thus, salt-tolerant xylanases may contribute to high-salt and marine food processing, aquatic feed production, industrial wastewater treatment, saline-alkali soil improvement, and global carbon cycle, with great commercial and environmental benefits. This review mainly introduces the definition, sources, classification, biochemical and molecular characteristics, adaptation mechanisms, and biotechnological applications of salt-tolerant xylanases. The scope of development for salt-tolerant xylanases is also discussed. It is anticipated that this review would serve as a reference for further development and utilization of salt-tolerant xylanases and other salt-tolerant enzymes.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
6
|
|
7
|
Prakash Kamble P, Shivaji Suryawanshi S, Vishnu Kore M, Irani N, Prafulla Jadhav J, Chand Attar Y. Bioconversion of Weedy Waste into Sugary Wealth. Microorganisms 2020. [DOI: 10.5772/intechopen.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Ma J, Li Q, Tan H, Jiang H, Li K, Zhang L, Shi Q, Yin H. Unique N-glycosylation of a recombinant exo-inulinase from Kluyveromyces cicerisporus and its effect on enzymatic activity and thermostability. J Biol Eng 2019; 13:81. [PMID: 31737090 PMCID: PMC6844067 DOI: 10.1186/s13036-019-0215-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Background Inulinase can hydrolyze polyfructan into high-fructose syrups and fructoligosaccharides, which are widely used in food, the medical industry and the biorefinery of Jerusalem artichoke. In the present study, a recombinant exo-inulinase (rKcINU1), derived from Kluyveromyces cicerisporus CBS4857, was proven as an N-linked glycoprotein, and the removal of N-linked glycan chains led to reduced activity. Results Five N-glycosylation sites with variable high mannose-type oligosaccharides (Man3–9GlcNAc2) were confirmed in the rKcINU1. The structural modeling showed that all five glycosylation sites (Asn-362, Asn-370, Asn-399, Asn-467 and Asn-526) were located at the C-terminus β-sandwich domain, which has been proven to be more conducive to the occurrence of glycosylation modification than the N-terminus domain. Single-site N-glycosylation mutants with Asn substituted by Gln were obtained, and the Mut with all five N-glycosylation sites removed was constructed, which resulted in the loss of all enzyme activity. Interestingly, the N362Q led to an 18% increase in the specific activity against inulin, while a significant decrease in thermostability (2.91 °C decrease in Tm) occurred, and other single mutations resulted in the decrease in the specific activity to various extents, among which N467Q demonstrated the lowest enzyme activity. Conclusion The increased enzyme activity in N362Q, combined with thermostability testing, 3D modeling, kinetics data and secondary structure analysis, implied that the N-linked glycan chains at the Asn-362 position functioned negatively, mainly as a type of steric hindrance toward its adjacent N-glycans to bring rigidity. Meanwhile, the N-glycosylation at the other four sites positively regulated enzyme activity caused by altered substrate affinity by means of fine-tuning the β-sandwich domain configuration. This may have facilitated the capture and transfer of substrates to the enzyme active cavity, in a manner quite similar to that of carbohydrate binding modules (CBMs), i.e. the chains endowed the β-sandwich domain with the functions of CBM. This study discovered a unique C-terminal sequence which is more favorable to glycosylation, thereby casting a novel view for glycoengineering of enzymes from fungi via redesigning the amino acid sequence at the C-terminal domain, so as to optimize the enzymatic properties.
Collapse
Affiliation(s)
- Junyan Ma
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China.,2Liaoning Province Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622 China
| | - Qian Li
- 2Liaoning Province Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622 China
| | - Haidong Tan
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Hao Jiang
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Kuikui Li
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Lihua Zhang
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Quan Shi
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Heng Yin
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
9
|
Yousefi-Mokri M, Sharafi A, Rezaei S, Sadeghian-Abadi S, Imanparast S, Mogharabi-Manzari M, Amanzadeh Y, Faramarzi MA. Enzymatic hydrolysis of inulin by an immobilized extremophilic inulinase from the halophile bacterium Alkalibacillus filiformis. Carbohydr Res 2019; 483:107746. [DOI: 10.1016/j.carres.2019.107746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
|
10
|
|
11
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
12
|
Dong M, Yang Y, Tang X, Shen J, Xu B, Li J, Wu Q, Zhou J, Ding J, Han N, Mu Y, Huang Z. NaCl-, protease-tolerant and cold-active endoglucanase from Paenibacillus sp. YD236 isolated from the feces of Bos frontalis. SPRINGERPLUS 2016; 5:746. [PMID: 27376014 PMCID: PMC4909688 DOI: 10.1186/s40064-016-2360-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Bos frontalis, which consumes
bamboo and weeds, may have evolved unique gastrointestinal microorganisms that digest cellulase. A Paenibacillus sp. YD236 strain was isolated from B. frontalis feces, from which a GH8 endoglucanase gene, pglue8 (1107 bp, 54.5 % GC content), encoding a 368-residue polypeptide (PgluE8, 40.4 kDa) was cloned. PgluE8 efficiently hydrolyzed barley-β-d-glucan followed by CMC-Na, soluble starch, laminarin, and glucan from black yeast optimally at pH 5.5 and 50 °C, and retained 78.6, 41.6, and 34.5 % maximum activity when assayed at 20, 10, and 0 °C, respectively. Enzyme activity remained above 176.6 % after treatment with 10.0 mM β-mercaptoethanol, and was 83.0, 78, and 56 % after pre-incubation in 30 % (w/v) NaCl, 16.67 mg/mL trypsin, and 160.0 mg/mL protease K, respectively. Cys23 and Cys364 residues were critical for PgluE8 activity. pglue8, identified from B. frontalis feces for the first time in this study, is a potential alternative for applications including food processing, washing, and animal feed preparation.
Collapse
Affiliation(s)
- Mingjie Dong
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yunjuan Yang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Xianghua Tang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Jidong Shen
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Bo Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junjun Li
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junpei Zhou
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junmei Ding
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Nanyu Han
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yuelin Mu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| |
Collapse
|
13
|
Holyavka M, Artyukhov V, Kovaleva T. Structural and functional properties of inulinases: A review. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1196486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Zhou J, Song Z, Zhang R, Ding L, Wu Q, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Characterization of a NaCl-tolerant β-N-acetylglucosaminidase from Sphingobacterium sp. HWLB1. Extremophiles 2016; 20:547-57. [DOI: 10.1007/s00792-016-0848-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
15
|
Rawat HK, Soni H, Treichel H, Kango N. Biotechnological potential of microbial inulinases: Recent perspective. Crit Rev Food Sci Nutr 2016; 57:3818-3829. [DOI: 10.1080/10408398.2016.1147419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hemant Kumar Rawat
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| | - Hemant Soni
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| | - Helen Treichel
- Universidade Federal da Fronteira Sul-Campus de Erechim, Erechim, Brazil
| | - Naveen Kango
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| |
Collapse
|
16
|
Shen J, Zhang R, Li J, Tang X, Li R, Wang M, Huang Z, Zhou J. Characterization of an exo-inulinase from Arthrobacter: a novel NaCl-tolerant exo-inulinase with high molecular mass. Bioengineered 2016; 6:99-105. [PMID: 25695343 DOI: 10.1080/21655979.2015.1019686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A glycoside hydrolase family 32 exo-inulinase gene was cloned from Arthrobacter sp. HJ7 isolated from saline soil located in Heijing town. The gene encodes an 892-residue polypeptide with a calculated mass of 95.1 kDa and a high total frequency of amino acid residues G, A, and V (30.0%). Escherichia coli BL21 (DE3) cells were used as hosts to express the exo-inulinase gene. The recombinant exo-inulinase (rInuAHJ7) showed an apparently maximal activity at pH 5.0-5.5 and 40-45°C. The addition of 1.0 and 10.0 mM Zn(2+) and Pb(2+) had little or no effect on the enzyme activity. rInuAHJ7 exhibited good salt tolerance, retaining more than 98% inulinase activity at a concentration of 3.0%-20.0% (w/v) NaCl. Fructose was the main product of inulin, levan, and Jerusalem artichoke tubers hydrolyzed by the enzyme. The present study is the first to report the identification and characterization of an Arthrobacter sp exo-inulinase showing a high molecular mass of 95.1 kDa and NaCl tolerance. These results suggest that the exo-inulinase might be an alternative material for potential applications in processing seafood and other foods with high saline contents, such as marine algae, pickles, and sauces.
Collapse
Affiliation(s)
- Jidong Shen
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy; Ministry of Education ; Yunnan Normal University ; Kunming , PR China
| | | | | | | | | | | | | | | |
Collapse
|