1
|
Ito M, Watanabe K, Maruyama T, Mori T, Niwa K, Chow S, Takeyama H. Enrichment of bacteria and alginate lyase genes potentially involved in brown alga degradation in the gut of marine gastropods. Sci Rep 2019; 9:2129. [PMID: 30765748 PMCID: PMC6375959 DOI: 10.1038/s41598-018-38356-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
Gut bacteria of phytophagous and omnivorous marine invertebrates often possess alginate lyases (ALGs), which are key enzymes for utilizing macroalgae as carbon neutral biomass. We hypothesized that the exclusive feeding of a target alga to marine invertebrates would shift the gut bacterial diversity suitable for degrading the algal components. To test this hypothesis, we reared sea hare (Dolabella auricularia) and sea snail (Batillus cornutus) for two to four weeks with exclusive feeding of a brown alga (Ecklonia cava). Pyrosequencing analysis of the gut bacterial 16S rRNA genes revealed shifts in the gut microbiota after rearing, mainly due to a decrease in the variety of bacterial members. Significant increases in six and four 16S rRNA gene phylotypes were observed in the reared sea hares and sea snails, respectively, and some of them were phylogenetically close to known alginate-degrading bacteria. Clone library analysis of PL7 family ALG genes using newly designed degenerate primer sets detected a total of 50 ALG gene phylotypes based on 90% amino acid identity. The number of ALG gene phylotypes increased in the reared sea hare but decreased in reared sea snail samples, and no phylotype was shared between them. Out of the 50 phylotypes, 15 were detected only after the feeding procedure. Thus, controlled feeding strategy may be valid and useful for the efficient screening of genes suitable for target alga fermentation.
Collapse
Affiliation(s)
- Michihiro Ito
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo, 162-0041, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Kotaro Watanabe
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Toru Maruyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Tetsushi Mori
- International Center for Science and Engineering Programs, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kentaro Niwa
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Seinen Chow
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo, 162-0041, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-0072, Japan.
| |
Collapse
|
2
|
High-throughput amplicon sequencing demonstrates extensive diversity of xylanase genes in the sediment of soda lake Dabusu. Biotechnol Lett 2019; 41:409-418. [PMID: 30644013 DOI: 10.1007/s10529-019-02646-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To explore the diversity of glycoside hydrolase family 10 xylanase genes in the sediment of soda lake Dabusu by using high-throughput amplicon sequencing based on the Illumina HiSeq2500 platform. RESULTS A total of 227,420 clean reads, representing approximately 49.5 M bp, were obtained. Operational taxonomic unit (OTU) classification, with a 95% sequence identity cut-off, resulted in 467 OTUs with 392 annotated as GH10 xylanase, exhibiting 35-99% protein sequence identity with their closest-related xylanases in GenBank. Above 75% of the total OTUs demonstrated less than 80% identity with known xylanases. In addition, xylanases derived from the sediment were found to be affiliated to 12 different phyla, with Bacteroidetes, Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, and Basidiomycota being the dominant phyla. Moreover, barcode sequence had a major effect on abundance with only a minor effect on diversity. CONCLUSIONS High-throughput amplicon sequencing offers insight into xylanase gene diversity at a substantially higher resolution and lesser cost than library cloning and Sanger sequencing, facilitating a more thorough understanding of xylanase distribution and ecology.
Collapse
|
3
|
Baweja M, Nain L, Kawarabayasi Y, Shukla P. Current Technological Improvements in Enzymes toward Their Biotechnological Applications. Front Microbiol 2016; 7:965. [PMID: 27379087 PMCID: PMC4909775 DOI: 10.3389/fmicb.2016.00965] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Enzymes from extremophiles are creating interest among researchers due to their unique properties and the enormous power of catalysis at extreme conditions. Since community demands are getting more intensified, therefore, researchers are applying various approaches viz. metagenomics to increase the database of extremophilic species. Furthermore, the innovations are being made in the naturally occurring enzymes utilizing various tools of recombinant DNA technology and protein engineering, which allows redesigning of the enzymes for its better fitment into the process. In this review, we discuss the biochemical constraints of psychrophiles during survival at the lower temperature. We summarize the current knowledge about the sources of such enzymes and their in vitro modification through mutagenesis to explore their biotechnological potential. Finally, we recap the microbial cell surface display to enhance the efficiency of the process in cost effective way.
Collapse
Affiliation(s)
- Mehak Baweja
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak India
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi India
| | - Yutaka Kawarabayasi
- National Institute of Advanced Industrial Science and Technology, Tsukuba Japan
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak India
| |
Collapse
|