1
|
de Melo RN, de Souza Hassemer G, Steffens J, Junges A, Valduga E. Recent updates to microbial production and recovery of polyhydroxyalkanoates. 3 Biotech 2023; 13:204. [PMID: 37223002 PMCID: PMC10200728 DOI: 10.1007/s13205-023-03633-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
The increasing use of synthetic polymers and their disposal has raised concern due to their adverse effects on the environment. Thus, other sustainable alternatives to synthetic plastics have been sought, such as polyhydroxyalkanoates (PHAs), which are promising microbial polyesters, mainly due to their compostable nature, biocompatibility, thermostability, and resilience, making this biopolymer acceptable in several applications in the global market. The large-scale production of PHAs by microorganisms is still limited by the high cost of production compared to conventional plastics. This review reports some strategies mentioned in the literature aimed at production and recovery, paving the way for the bio-based economy. For this, some aspects of PHAs are addressed, such as synthesis, production systems, process control using by-products from industries, and advances and challenges in the downstream. The bioplastics properties made them a prime candidate for food, pharmaceutical, and chemical industrial applications. With this paper, it is possible to see that biodegradable polymers are promising materials, mainly for reducing the pollution produced by polymers derived from petroleum.
Collapse
Affiliation(s)
- Rafaela Nery de Melo
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Guilherme de Souza Hassemer
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Juliana Steffens
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Alexander Junges
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Eunice Valduga
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| |
Collapse
|
2
|
Wu Q, Li SR, Wang YH, Wang HG, Wang ZM, Li M, Lin DQ. Effects of sodium chloride addition on immunoglobulin G partitioning and solubility in polyethylene glycol/hydroxypropyl starch aqueous two-phase system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Mastropetros SG, Pispas K, Zagklis D, Ali SS, Kornaros M. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: Recent advances. Biotechnol Adv 2022; 60:107999. [DOI: 10.1016/j.biotechadv.2022.107999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
4
|
Yang T, Zheng T, Wang Y, Zhang Y, He D, Zeng H, Wei Y, Chen X, Wan J, Cao X. Effective extraction of tylosin and spiramycin from fermentation broth using thermo-responsive ethylene oxide/propylene oxide aqueous two-phase systems. J Sep Sci 2021; 45:570-581. [PMID: 34818453 DOI: 10.1002/jssc.202100580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022]
Abstract
Recyclable aqueous two-phase systems with thermo-responsive phase-forming materials have been employed to separate macromolecules; however, these systems have achieved very limited separation efficiency for small molecules, such as antibiotics. In this study, aqueous two-phase systems composed of the ethylene oxide/propylene oxide copolymer and water were developed to extract alkaline antibiotics from the fermentation broth. In the aqueous two-phase systems with an ethylene oxide ratio of 20 and propylene oxide ratio of 80, the partition coefficients of tylosin and spiramycin reached 16.87 and 20.39, respectively, while the extraction recoveries were 70.67 and 86.70%, respectively. Coupled with mechanism analysis, we demonstrated the feasibility of extracting alkaline antibiotics using this aqueous two-phase system, especially for 16-membered macrolide antibiotics. The molecular dynamic simulation was employed to visualize the process of dual-phase formation and the partition behavior of antibiotics in an aqueous two-phase system. The dynamic simulation revealed the binding energy between the antibiotic and ethylene oxide/propylene oxide copolymers, which provides a simple indicator for screening suitable antibiotics in aqueous two-phase systems. Our recyclable aqueous two-phase systems provide a robust approach for the extraction of 16-membered macrolide antibiotics with ease of operation and high recovery rates, which is appropriate for large-scale extraction in the fermentation industry.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ting Zheng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Wang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Dong He
- Henan Topfond Pharmaceutical Company Limited, Zhumadian, P. R. China
| | - Hainan Zeng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanli Wei
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
5
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
6
|
Ng HS, Kee PE, Yim HS, Tan JS, Chow YH, Lan JCW. Characterization of alcohol/salt aqueous two-phase system for optimal separation of gallic acids. J Biosci Bioeng 2021; 131:537-542. [PMID: 33674222 DOI: 10.1016/j.jbiosc.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 01/15/2023]
Abstract
Gallic acid (GA) is a hydrophilic polyphenol which is noteworthy for strong antioxidant capacity. The drawbacks of conventional extraction approaches such as time-consuming and high processing cost are often viewed as a hurdle to extract GA from plant sources in industrial scale. Aqueous two-phase system (ATPS) is a separation approach which can be employed as an alternative to the conventional approaches. The partition behaviour of GA in an alcohol/salt ATPS was investigated in this study to aid the development of industrial scale ATPS to extract GA from natural sources. The separation of GA was characterized by determining the types of alcohol and salt, phase composition, sample load, pH of the system and addition of adjuvants applied in the alcohol/salt ATPS construction. The hydrophilic GA was targeted to the salt-rich phase of the alcohol/salt ATPS with a partition coefficient (KGA) of 25.00 ± 0.00. The optimum condition of ATPS for the maximum partition of GA was achieved in ATPS comprised of 24% (w/w) 1-propanol and 22% (w/w) phosphate salt at pH 8 with 5% (w/w) of 1 mg/mL sample loading and 2% (w/w) NaCl addition. The findings suggest that ATPS can be applied for separation of GA from various natural sources.
Collapse
Affiliation(s)
- Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hip Seng Yim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yin Hui Chow
- School of Engineering, Faculty of Information and Technology, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Gao C, Cai C, Liu J, Wang Y, Chen Y, Wang L, Tan Z. Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents. Food Chem 2020; 313:126164. [DOI: 10.1016/j.foodchem.2020.126164] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/21/2019] [Accepted: 01/04/2020] [Indexed: 11/17/2022]
|
8
|
A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107283] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Cell Separation and Disruption, Product Recovery, and Purification. ESSENTIALS IN FERMENTATION TECHNOLOGY 2019. [DOI: 10.1007/978-3-030-16230-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JCW. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng 2018; 126:282-292. [DOI: 10.1016/j.jbiosc.2018.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
|
11
|
Chia SR, Show PL, Phang SM, Ling TC, Ong HC. Sustainable approach in phlorotannin recovery from macroalgae. J Biosci Bioeng 2018; 126:220-225. [PMID: 29673988 DOI: 10.1016/j.jbiosc.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/20/2018] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential for solvent recovery which is beneficial to the environment. Phlorotannin is a bioactive compound that has gained much attention due to its health beneficial effect. Therefore, the isolation of phlorotannin is lucrative as it contains various biological activities that are capable to be utilised into food and pharmaceutical application. By using 2-propanol/ammonium sulphate system, the highest recovery of phlorotannin was 76.1% and 91.67% with purification factor of 2.49 and 1.59 from Padina australis and Sargassum binderi, respectively. A recycling study was performed and the salt phase of system was recycled where maximum salt recovery of 41.04% and 72.39% could be obtained from systems containing P. australis and S. binderi, respectively. Similar recovery of phlorotannin was observed after performing two cycles of the system, this concludes that the system has good recyclability and eco-friendly.
Collapse
Affiliation(s)
- Shir Reen Chia
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Siew-Moi Phang
- Institute Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2017; 4:bioengineering4020055. [PMID: 28952534 PMCID: PMC5590474 DOI: 10.3390/bioengineering4020055] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.
Collapse
|