1
|
Deng R, Li YL, Liu JL. Differential Cytoophidium Assembly between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Int J Mol Sci 2024; 25:10092. [PMID: 39337578 PMCID: PMC11432714 DOI: 10.3390/ijms251810092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by the enzyme CTP synthase (CTPS), which is known to form cytoophidia across all three domains of life. In this study, we use the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as model organisms to compare cytoophidium assembly under external environmental and intracellular CTPS alterations. We observe that under low and high temperature conditions, cytoophidia in fission yeast gradually disassemble, while cytoophidia in budding yeast remain unaffected. The effect of pH changes on cytoophidia maintenance in the two yeast species is different. When cultured in the yeast-saturated cultured medium, cytoophidia in fission yeast disassemble, while cytoophidia in budding yeast gradually form. Overexpression of CTPS results in the presence and maintenance of cytoophidia in both yeast species from the log phase to the stationary phase. In summary, our results demonstrate differential cytoophidium assembly between Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two most studied yeast species.
Collapse
Affiliation(s)
- Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
2
|
Albacar M, Zekhnini A, Pérez-Valle J, Martínez JL, Casamayor A, Ariño J. Transcriptomic profiling of the yeast Komagataella phaffii in response to environmental alkalinization. Microb Cell Fact 2023; 22:63. [PMID: 37013612 PMCID: PMC10071690 DOI: 10.1186/s12934-023-02074-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Adaptation to alkalinization of the medium in fungi involves an extensive remodeling of gene expression. Komagataella phaffii is an ascomycetous yeast that has become an organism widely used for heterologous protein expression. We explore here the transcriptional impact of moderate alkalinization in this yeast, in search of suitable novel promoters able to drive transcription in response to the pH signal. RESULTS In spite of a minor effect on growth, shifting the cultures from pH 5.5 to 8.0 or 8.2 provokes significant changes in the mRNA levels of over 700 genes. Functional categories such as arginine and methionine biosynthesis, non-reductive iron uptake and phosphate metabolism are enriched in induced genes, whereas many genes encoding iron-sulfur proteins or members of the respirasome were repressed. We also show that alkalinization is accompanied by oxidative stress and we propose this circumstance as a common trigger of a subset of the observed changes. PHO89, encoding a Na+/Pi cotransporter, appears among the most potently induced genes by high pH. We demonstrate that this response is mainly based on two calcineurin-dependent response elements located in its promoter, thus indicating that alkalinization triggers a calcium-mediated signal in K. phaffii. CONCLUSIONS This work defines in K. phaffii a subset of genes and diverse cellular pathways that are altered in response to moderate alkalinization of the medium, thus setting the basis for developing novel pH-controlled systems for heterologous protein expression in this fungus.
Collapse
Affiliation(s)
- Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Abdelghani Zekhnini
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Jorge Pérez-Valle
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - José L Martínez
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
3
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
4
|
Tominaga A, Higuchi Y, Mori H, Akai M, Suyama A, Yamada N, Takegawa K. Catechol O-methyltransferase homologs in Schizosaccharomyces pombe are response factors to alkaline and salt stress. Appl Microbiol Biotechnol 2019; 103:4881-4887. [PMID: 31053915 DOI: 10.1007/s00253-019-09858-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
How cells of the fission yeast Schizosaccharomyces pombe respond to alkaline stress is not well understood. Here, to elucidate the molecular mechanism underlying the alkaline stress response in S. pombe, we performed DNA microarray analysis. We found that a homolog of human catechol O-methyltransferase 2 (COMT2) is highly upregulated in S. pombe cells exposed to alkaline conditions. We designated the S. pombe homolog as cmt2+ and also identified its paralog, cmt1+, in the S. pombe genome. Reverse transcription PCR confirmed that both cmt1+ and cmt2+ are upregulated within 1 h of exposure to alkaline stress and downregulated within 30 min of returning to an acidic environment. Moreover, we verified that recombinant Cmt proteins exhibit catechol O-methyltransferase activity. To further characterize the expression of cmt1+ and cmt2+, we carried out an EGFP reporter assay using their promoter sequences, which showed that both genes respond not only to alkaline but also to salt stress. Collectively, our findings indicate that the cmt promoter might be an advantageous expression system for use in S. pombe under alkaline culture conditions.
Collapse
Affiliation(s)
- Akihiro Tominaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikari Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Makoto Akai
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akiko Suyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|