1
|
Lanfranchi E, Ferrario V, Gandomkar S, Payer SE, Zukic E, Rudalija H, Musi A, Gaberscek I, Orel Y, Schachtschabel D, Willrodt C, Breuer M, Kroutil W. Transforming a Historical Chemical Synthetic Route for Vanillin Starting from Renewable Eugenol to a Cell-Free Bi-Enzymatic Cascade. CHEMSUSCHEM 2025:e202500387. [PMID: 40091706 DOI: 10.1002/cssc.202500387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Vanillin is one of the most important aroma compounds, naturally occurring in vanilla pods. Many routes to access natural vanillin from various renewables have been investigated, including a natural five-step microbial transformation of eugenol to vanillin. Readily available eugenol was also the starting material for a chemical two-step sequence to vanillin employed in the 19th century. Here we show that a two-step sequence can also be realized using biocatalysts only and run it in one-pot simultaneously. This was achieved by isomerizing the C=C double bond of eugenol by oxidation to coniferyl alcohol followed by oxidative C=C cleavage catalyzed by newly identified enzymes. Thus, two oxidative steps catalyzed by two different biocatalysts - one containing flavin and the other a non-heme iron(II) cofactor - were successfully run simultaneously just requiring molecular oxygen as oxidant for each step. Using natural eugenol sources, e. g. clove oil, vanillin was obtained with 91 % product formation. This study shows that natural pathways like the microbial transformation of eugenol to vanillin involving five steps can be shortened, hereto just two simultaneous steps, by exploiting and combining the repertoire of promiscuous enzymatic activities present in different organisms leading to new-to-nature cascades.
Collapse
Affiliation(s)
- Elisa Lanfranchi
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Valerio Ferrario
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Somayyeh Gandomkar
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Stefan E Payer
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Erna Zukic
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Haris Rudalija
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Alexandra Musi
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Ines Gaberscek
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Yuliya Orel
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | | | - Christian Willrodt
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Michael Breuer
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Wolfgang Kroutil
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| |
Collapse
|
2
|
De Simone M, Alonso-Cotchico L, Lucas MF, Brissos V, Martins LO. Distal mutations enhance efficiency of free and immobilized NOV1 dioxygenase for vanillin synthesis. J Biotechnol 2024; 391:92-98. [PMID: 38880386 DOI: 10.1016/j.jbiotec.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Protein engineering is crucial to improve enzymes' efficiency and robustness for industrial biocatalysis. NOV1 is a bacterial dioxygenase that holds biotechnological potential by catalyzing the one-step oxidation of the lignin-derived isoeugenol into vanillin, a popular flavoring agent used in food, cleaning products, cosmetics and pharmaceuticals. This study aims to enhance NOV1 activity and operational stability through the identification of distal hotspots, located at more than 9 Å from the active site using Zymspot, a tool that predicts advantageous distant mutations, streamlining protein engineering. A total of 41 variants were constructed using site-directed mutagenesis and the six most active enzyme variants were then recombined. Two variants, with two and three mutations, showed nearly a 10-fold increase in activity and up to 40-fold higher operational stability than the wild-type. Furthermore, these variants show 90-100 % immobilization efficiency in metal affinity resins, compared to approximately 60 % for the wild-type. In bioconversions where 50 mM of isoeugenol was added stepwise over 24-h cycles, the 1D2 variant produced approximately 144 mM of vanillin after six reaction cycles, corresponding to around 22 mg, indicating a 35 % molar conversion yield. This output was around 2.5 times higher than that obtained using the wild-type. Our findings highlight the efficacy of distal protein engineering in enhancing enzyme functions like activity, stability, and metal binding selectivity, thereby fulfilling the criteria for industrial biocatalysts. This study provides a novel approach to enzyme optimization that could have significant implications for various biotechnological applications.
Collapse
Affiliation(s)
- Mario De Simone
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | | | | | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal.
| |
Collapse
|
3
|
Fujimaki S, Sakamoto S, Shimada S, Kino K, Furuya T. Engineering a coenzyme-independent dioxygenase for one-step production of vanillin from ferulic acid. Appl Environ Microbiol 2024; 90:e0023324. [PMID: 38727223 PMCID: PMC11218615 DOI: 10.1128/aem.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
Vanillin is one of the world's most important flavor and fragrance compounds used in foods and cosmetics. In plants, vanillin is reportedly biosynthesized from ferulic acid via the hydratase/lyase-type enzyme VpVAN. However, in biotechnological and biocatalytic applications, the use of VpVAN limits the production of vanillin. Although microbial enzymes are helpful as substitutes for plant enzymes, synthesizing vanillin from ferulic acid in one step using microbial enzymes remains a challenge. Here, we developed a single enzyme that catalyzes vanillin production from ferulic acid in a coenzyme-independent manner via the rational design of a microbial dioxygenase in the carotenoid cleavage oxygenase family using computational simulations. This enzyme acquired catalytic activity toward ferulic acid by introducing mutations into the active center to increase its affinity for ferulic acid. We found that the single enzyme can catalyze not only the production of vanillin from ferulic acid but also the synthesis of other aldehydes from p-coumaric acid, sinapinic acid, and coniferyl alcohol. These results indicate that the approach used in this study can greatly expand the range of substrates available for the dioxygenase family of enzymes. The engineered enzyme enables efficient production of vanillin and other value-added aldehydes from renewable lignin-derived compounds. IMPORTANCE The final step of vanillin biosynthesis in plants is reportedly catalyzed by the enzyme VpVAN. Prior to our study, VpVAN was the only reported enzyme that directly converts ferulic acid to vanillin. However, as many characteristics of VpVAN remain unknown, this enzyme is not yet suitable for biocatalytic applications. We show that an enzyme that converts ferulic acid to vanillin in one step could be constructed by modifying a microbial dioxygenase-type enzyme. The engineered enzyme is of biotechnological importance as a tool for the production of vanillin and related compounds via biocatalytic processes and metabolic engineering. The results of this study may also provide useful insights for understanding vanillin biosynthesis in plants.
Collapse
Affiliation(s)
- Shizuka Fujimaki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Satsuki Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Shota Shimada
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
4
|
Xu L, Liaqat F, Sun J, Khazi MI, Xie R, Zhu D. Advances in the vanillin synthesis and biotransformation: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2024; 189:113905. [DOI: 10.1016/j.rser.2023.113905] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
5
|
Lomascolo A, Odinot E, Villeneuve P, Lecomte J. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:173. [PMID: 37964324 PMCID: PMC10644543 DOI: 10.1186/s13068-023-02425-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
p-Hydroxycinnamic acids, such as sinapic, ferulic, p-coumaric and caffeic acids, are among the most abundant phenolic compounds found in plant biomass and agro-industrial by-products (e.g. cereal brans, sugar-beet and coffee pulps, oilseed meals). These p-hydroxycinnamic acids, and their resulting decarboxylation products named vinylphenols (canolol, 4-vinylguaiacol, 4-vinylphenol, 4-vinylcatechol), are bioactive molecules with many properties including antioxidant, anti-inflammatory and antimicrobial activities, and potential applications in food, cosmetic or pharmaceutical industries. They were also shown to be suitable precursors of new sustainable polymers and biobased substitutes for fine chemicals such as bisphenol A diglycidyl ethers. Non-oxidative microbial decarboxylation of p-hydroxycinnamic acids into vinylphenols involves cofactor-free and metal-independent phenolic acid decarboxylases (EC 4.1.1 carboxyl lyase family). Historically purified from bacteria (Bacillus, Lactobacillus, Pseudomonas, Enterobacter genera) and some yeasts (e.g. Brettanomyces or Candida), these enzymes were described for the decarboxylation of ferulic and p-coumaric acids into 4-vinylguaiacol and 4-vinylphenol, respectively. The catalytic mechanism comprised a first step involving p-hydroxycinnamic acid conversion into a semi-quinone that then decarboxylated spontaneously into the corresponding vinyl compound, in a second step. Bioconversion processes for synthesizing 4-vinylguaiacol and 4-vinylphenol by microbial decarboxylation of ferulic and p-coumaric acids historically attracted the most research using bacterial recombinant phenolic acid decarboxylases (especially Bacillus enzymes) and the processes developed to date included mono- or biphasic systems, and the use of free- or immobilized cells. More recently, filamentous fungi of the Neolentinus lepideus species were shown to natively produce a more versatile phenolic acid decarboxylase with high activity on sinapic acid in addition to the others p-hydroxycinnamic acids, opening the way to the production of canolol by biotechnological processes applied to rapeseed meal. Few studies have described the further microbial/enzymatic bioconversion of these vinylphenols into valuable compounds: (i) synthesis of flavours such as vanillin, 4-ethylguaiacol and 4-ethylphenol from 4-vinylguaiacol and 4-vinylphenol, (ii) laccase-mediated polymer synthesis from canolol, 4-vinylguaiacol and 4-vinylphenol.
Collapse
Affiliation(s)
- Anne Lomascolo
- Aix Marseille Univ., INRAE, UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France.
| | - Elise Odinot
- OléoInnov, 19 rue du Musée, 13001, Marseille, France
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
6
|
Martínková L, Grulich M, Pátek M, Křístková B, Winkler M. Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review. Biomolecules 2023; 13:biom13050717. [PMID: 37238587 DOI: 10.3390/biom13050717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of "technical lignins". The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and resistance of lignins. Progress toward mild work-up of lignins has been discussed in numerous reviews. The next step in the valorization of lignin is the conversion of lignin-based monomers, which are limited in number, into a wider range of bulk and fine chemicals. These reactions may need chemicals, catalysts, solvents, or energy from fossil resources. This is counterintuitive to green, sustainable chemistry. Therefore, in this review, we focus on biocatalyzed reactions of lignin monomers, e.g., vanillin, vanillic acid, syringaldehyde, guaiacols, (iso)eugenol, ferulic acid, p-coumaric acid, and alkylphenols. For each monomer, its production from lignin or lignocellulose is summarized, and, mainly, its biotransformations that provide useful chemicals are discussed. The technological maturity of these processes is characterized based on, e.g., scale, volumetric productivities, or isolated yields. The biocatalyzed reactions are compared with their chemically catalyzed counterparts if the latter are available.
Collapse
Affiliation(s)
- Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, 8010 Graz, Austria
| |
Collapse
|