1
|
Isaac SL, Mohd Hashim A, Faizal Wong FW, Mohamed Akbar MA, Wan Ahmad Kamil WNI. A Review on Bacteriocin Extraction Techniques from Lactic Acid Bacteria. Probiotics Antimicrob Proteins 2025; 17:937-962. [PMID: 39432230 DOI: 10.1007/s12602-024-10384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Lactic acid bacteria (LAB) are widely known for the production of secondary metabolites such as organic acids and other bioactive compounds such as bacteriocins. Finding a broad application in food and healthcare, bacteriocins have received increased attention due to their inherent antimicrobial properties. However, the extraction of bacteriocins is often plagued with low yields due to the complexity of the extraction processes and the diversity of bacteriocins themselves. Here, we review the current knowledge related to bacteriocin extraction on the different extraction techniques for isolating bacteriocins from LAB. The advantages and disadvantages of each technique will also be critically appraised, taking into account factors such as extraction efficiency, scalability and cost-effectiveness. This review aims to guide researchers and professionals in selecting the most suitable approach for bacteriocin extraction from LAB by illuminating the respective advantages and limitations of various extraction techniques.
Collapse
Affiliation(s)
- Sharleen Livina Isaac
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Muhamad Afiq Mohamed Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Bekavac N, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J, Jurinjak Tušek A, Šalić A. Advancements in Aqueous Two-Phase Systems for Enzyme Extraction, Purification, and Biotransformation. Molecules 2024; 29:3776. [PMID: 39202854 PMCID: PMC11357509 DOI: 10.3390/molecules29163776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, the increasing need for energy conservation and environmental protection has driven industries to explore more efficient and sustainable processes. Liquid-liquid extraction (LLE) is a common method used in various sectors for separating components of liquid mixtures. However, the traditional use of toxic solvents poses significant health and environmental risks, prompting the shift toward green solvents. This review deals with the principles, applications, and advantages of aqueous two-phase systems (ATPS) as an alternative to conventional LLE. ATPS, which typically utilize water and nontoxic components, offer significant benefits such as high purity and single-step biomolecule extraction. This paper explores the thermodynamic principles of ATPS, factors influencing enzyme partitioning, and recent advancements in the field. Specific emphasis is placed on the use of ATPS for enzyme extraction, showcasing its potential in improving yields and purity while minimizing environmental impact. The review also highlights the role of ionic liquids and deep eutectic solvents in enhancing the efficiency of ATPS, making them viable for industrial applications. The discussion extends to the challenges of integrating ATPS into biotransformation processes, including enzyme stability and process optimization. Through comprehensive analysis, this paper aims to provide insights into the future prospects of ATPS in sustainable industrial practices and biotechnological applications.
Collapse
Affiliation(s)
- Nikša Bekavac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Baghbanbashi M, Shiran HS, Kakkar A, Pazuki G, Ristroph K. Recent advances in drug delivery applications of aqueous two-phase systems. PNAS NEXUS 2024; 3:pgae255. [PMID: 39006476 PMCID: PMC11245733 DOI: 10.1093/pnasnexus/pgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Aqueous two-phase systems (ATPSs) are liquid-liquid equilibria between two aqueous phases that usually contain over 70% water content each, which results in a nontoxic organic solvent-free environment for biological compounds and biomolecules. ATPSs have attracted significant interest in applications for formulating carriers (microparticles, nanoparticles, hydrogels, and polymersomes) which can be prepared using the spontaneous phase separation of ATPSs as a driving force, and loaded with a wide range of bioactive materials, including small molecule drugs, proteins, and cells, for delivery applications. This review provides a detailed analysis of various ATPSs, including strategies employed for particle formation, polymerization of droplets in ATPSs, phase-guided block copolymer assemblies, and stimulus-responsive carriers. Processes for loading various bioactive payloads are discussed, and applications of these systems for drug delivery are summarized and discussed.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hadi Shaker Shiran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Kurt Ristroph
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Zhang XH, Cui HN, Zheng JJ, Qing XD, Yang KL, Zhang YQ, Ren LM, Pan LY, Yin XL. Discrimination of the harvesting season of green tea by alcohol/salt-based aqueous two-phase systems combined with chemometric analysis. Food Res Int 2023; 163:112278. [PMID: 36596188 DOI: 10.1016/j.foodres.2022.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The flavor and aroma quality of green tea are closely related to the harvest season. The aim of this study was to identify the harvesting season of green tea by alcohol/salt-based aqueous two-phase system (ATPS) combined with chemometric analysis. In this paper, the single factor experiments (SFM) and response surface methodology (RSM) optimization were designed to investigate and select the optimal ATPS. A total of 180 green tea samples were studied in this work, including 86 spring tea and 94 autumn tea. After the active components in green tea samples were extracted by the optimal ethanol/(NH4)2SO4 ATPS, the qualitative and quantitative analysis was realized based on HPLC-DAD combined with alternating trilinear decomposition-assisted multivariate curve resolution (ATLD-MCR) algorithm, with satisfactory spiked recoveries (86.00 %-112.45 %). The quantitative results obtained from ATLD-MCR model were subjected to chemometric pattern recognition analysis. The constructed partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) models showed better results than the principal component analysis (PCA) model, and the R2Xcum values (>0.835) and R2Ycum (>0.937) were close to 1, the Q2cum values were greater than 0.75 (>0.933), and the differences between R2Ycum and Q2cum were not larger than 0.2, indicating excellent cross-validation prediction performance of the models. Furthermore, the classification results based on the hierarchical clustering analysis (HCA) were consistent with the PCA, PLS-DA and OPLS-DA results, establishing a good correlation between tea active components and the harvesting seasons of green tea. Overall, the combination of ATPS and chemometric methods is accurate, sensitive, fast and reliable for the qualitative and quantitative determination of tea active components, providing guidance for the quality control of green tea.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China.
| | - Hui-Na Cui
- College of Life Sciences, Yangtze University, Jingzhou 434023, China
| | - Jing-Jing Zheng
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiang-Dong Qing
- Hunan Provincial Key Laboratory of Dark Tea and Jin-hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413049, PR China
| | - Kai-Long Yang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Ya-Qian Zhang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Lu-Meng Ren
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Le-Yuan Pan
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiao-Li Yin
- College of Life Sciences, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
5
|
Aqueous biphasic systems as a key tool for food processing. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
|
8
|
Shang Z, Xu P, Yue H, Feng D, Zhu T, Li X. Remediation of diesel-contaminated soil by alkoxyethanol aqueous two-phase system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25810-25823. [PMID: 34846662 DOI: 10.1007/s11356-021-17836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The increasing diesel pollution accidents pose a serious threat to the ecological environment and human health. Remediation of diesel-contaminated soil (DCS) has attracted widespread attention during the past few decades. This work proposed an approach for the remediation of DCS by alkoxyethanol aqueous two-phase extraction (ATPE), which was an application of this small molecule aqueous two-phase system (ATPS). In addition, the influence of temperature, stirring speed, stirring time, and solid-liquid ratio on the removal of diesel was explored respectively. The removal efficiency of diesel could reach more than 97.18% in 18 min. Meanwhile, ATPS had high reusability, and the removal efficiency remained above 85.17% in the reuse process. Alkoxyethanol ATPE could effectively remove diesel hydrocarbons with different carbon chain lengths and the remediation process hardly caused residual organic solvents on the soil surface according to the analysis of gas chromatography-mass spectrometry (GC-MS) and Fourier transforms infrared (FT-IR), which could be regarded as the distinct advantage compared to the traditional surfactant washing method and organic solvent extraction method. The study of soil physicochemical properties and wheat germination proved that the soil structure and properties changed little after ATPE remediation. And finally, the mechanism of alkoxyethanol ATPE was intensively discussed according to the remediation characteristic. This work provided an efficient method for the remediation of DCS and widened the application fields of alkoxyethanol ATPS as well.
Collapse
Affiliation(s)
- Zhijie Shang
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Pan Xu
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haoyu Yue
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Dongyue Feng
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Taohua Zhu
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xinxue Li
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|