1
|
Nagaraja SS, Gouda Y, Miguez D, Muralidaran Y, Romanholo Ferreira LF, Américo-Pinheiro JHP, Mulla SI, Mishra P. Distinctive toxic repercussions of polystyrene nano plastic towards aquatic non target species Nitrobacter vulgaris, Scenedesmus sp and Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:61-75. [PMID: 39384726 DOI: 10.1007/s10646-024-02810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
The widespread application of plastics and its eventual degradation to micro-sized or nano-sized plastics has led to several environmental concerns. Moreover, nanoplastics can easily cascade through the food chain accumulating in the aquatic organisms. Thus, our study focussed on investigating the hazardous impact of nano-sized plastics on aquatic species including Nitrobacter vulgaris, Scenedesmus sp, and Daphnia magna. Various concentrations of polystyrene nanoplastics ranging from 0.01 mg/L to 100 mg/L were tested against Nitrobacter vulgaris, Scenedesmus sp, and Daphnia magna. The minimum inhibitory concentration of polystyrene nanoplastics in Nitrobacter vulgaris was found to be 25 mg/L, and in Daphnia magna, the median lethal concentration 50 was observed to be 64.02 mg/L. Exposure of Scenedesmus sp with increasing nanoplastic concentrations showed a significant decrease in total protein (p < 0.001), and chlorophyll content (p < 0.01), whereas the lipid peroxidation increased (p < 0.001) significantly. Similarly, Nitrobacter vulgaris and Daphnia magna showed a significant decrease in catalase activity (p < 0.001) and an increase in lipid peroxidation levels (p < 0.01). Concomitant with lipid peroxidation results, decreased superoxide dismutase levels (p < 0.01) and protein concentrations (p < 0.01) were observed in Daphnia magna. Besides, the increasing concentration of polystyrene nanoplastics displayed an elevated mortality rate in Scenedesmus sp (p < 0.001) and Nitrobacter vulgaris (p < 0.01). Further, scanning electron microscopy analysis substantiated the morphological alterations in Nitrobacter vulgaris and Scenedesmus sp on exposure to polystyrene nanoplastics.
Collapse
Affiliation(s)
- Sowmya Sri Nagaraja
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | - Yerimma Gouda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | - Diana Miguez
- Latitud - LATU Foundation, Technological Laboratory of Uruguay. Ave. Italia, Los Abetos Building, Montevideo, Uruguay
| | - Yuvashree Muralidaran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | | | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
2
|
Mohamad Sukri N, Abdul Manas NH, Jaafar NR, A Rahman R, Abdul Murad AM, Md Illias R. Effects of electrospun nanofiber fabrications on immobilization of recombinant Escherichia coli for production of xylitol from glucose. Enzyme Microb Technol 2024; 172:110350. [PMID: 37948908 DOI: 10.1016/j.enzmictec.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
A suitable nanofiber sheet was formulated and developed based on its efficacy in the immobilization of recombinant Escherichia coli (E. coli) to enhance xylitol production. The effects of different types of nanofibers and solvents on cell immobilization and xylitol production were studied. The most applicable nanofiber membrane was selected via preliminary screening of four types of nanofiber membrane, followed by the selection of six different solvents. Polyvinylidene fluoride (PVDF) nanofiber sheet synthesized using dimethylformamide (DMF) solvent was found to be the most suitable carrier for immobilization and xylitol production. The thin, beaded PVDF (DMF) nanofibers were more favourable for microbial adhesion, with the number of immobilized cells as high as 96 × 106 ± 3.0 cfu/ml. The attraction force between positively charged PVDF nanofibers and the negatively charged E. coli indicates that the electrostatic interaction plays a significant role in cell adsorption. The use of DMF has also produced PVDF nanofibers biocatalyst capable of synthesizing the highest xylitol concentration (2.168 g/l) and productivity (0.090 g/l/h) and 55-69% reduction in cell lysis compared with DMSO solvent and free cells. This finding suggests that recombinant E. coli immobilized on nanofibers shows great potential as a whole-cell biocatalyst for xylitol production.
Collapse
Affiliation(s)
- Norhamiza Mohamad Sukri
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
3
|
Zhu G, Zhang H, Yuan R, Huang M, Liu F, Li M, Zhang Y, Rittmann BE. How Comamonas testosteroni and Rhodococcus ruber enhance nitrification in the presence of quinoline. WATER RESEARCH 2023; 229:119455. [PMID: 36516493 DOI: 10.1016/j.watres.2022.119455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Because many wastewater-treatment plants receive effluents containing inhibitory compounds from chemical or pharmaceutical facilities, the input of these inhibitors can lead to failure of nitrification and total-N removal. Nitrification de facto is the more important process, as it is the first step of nitrogen removal and involves slow-growing autotrophic bacteria. In this work, quinoline, the target compound severely inhibited nitrification: The biomass-normalized nitrification rate decreased four-fold in the presence of quinoline. The inhibition was relieved by bioaugmenting Comamonas testosteroni or Rhodococcus ruber to the nitrifying biomass. Because the inhibition was derived from a quinoline intermediate, 2‑hydroxyl quinoline (2HQ), not quinoline itself, nitrification was accelerated only after 2HQ disappeared due to the addition of R. ruber or C. testosteroni. R. ruber was superior to C. testosteroni for 2HQ biodegradation and accelerating nitrification. Besides accelerating nitrification, adding C. testosteroni or R. ruber led to the enrichment of Nitrospira, which appeared to be carrying out commamox metabolism, since ammonium-oxidizing bacteria were not enriched.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Haiyun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Ru Yuan
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Meng Huang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Fei Liu
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Mo Li
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ85287-5701, United States
| |
Collapse
|
4
|
Tao M, Huang K. Biobased Chicken Eggshell Powder for Efficient Delivery of Low-Dose Silver Nanoparticles (AgNPs) to Enhance Their Antimicrobial Activities against Foodborne Pathogens and Biofilms. ACS APPLIED BIO MATERIALS 2022; 5:4390-4399. [PMID: 35944491 DOI: 10.1021/acsabm.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the current sanitation practices to decontaminate food-contact surfaces, persistent biofilms still pose significant threats to human health by inducing cross-contamination. This study aims to enhance the antimicrobial activity of low-dose silver nanoparticles (AgNPs) against foodborne pathogens and their biofilms through the development of a biobased delivery carrier for metallic nanoparticles. In this study, chicken eggshell powder (EP) was used as a biocompatible delivery carrier, and it possesses a strong ability to encapsulate green-synthesized AgNPs with an encapsulation efficiency of 80.18%. The EP carriers stabilized AgNPs in an organic-rich environment and prevented the aggregation of nanoparticles. The results of antimicrobial test demonstrate that EP significantly enhanced the antimicrobial efficacy of low-dose AgNPs (2 μg/mL), enabling 5-log reductions of planktonic Escherichia coli and Listeria innocua within 25 min and 60 min treatments, respectively, even in the presence of high organic content (chemical oxygen demand, COD = 1000 mg/L). Due to the high affinity of EP to bind biofilms, the encapsulated low-dose AgNPs can inactivate approximately 2-log CFU/cm2 of biofilms within a 2-h treatment. The proposed AgNPs@EP composite with a low silver concentration (2 μg/mL) can effectively inactivate and remove biofilms from food-contact surfaces in which such a low concentration of AgNPs is unlikely to induce negative impacts on human health and environment. Therefore, this antimicrobial AgNPs@EP composite can potentially be used as a biobased sanitizer for food-contact surfaces in a food manufacturing plant.
Collapse
Affiliation(s)
- Meihan Tao
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|