1
|
Yang M, Hao J, Zhang R, He R, Ma H. Breeding High-Yield Ethyl Caproate-Producing Saccharomyces cerevisiae in Sake: Flux Regulation from Glycolytic Fermentation to the FAS Pathway and Alcohol Acyltransferase Overexpression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7990-8000. [PMID: 40106670 DOI: 10.1021/acs.jafc.4c11395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ethyl caproate is the characteristic aroma compound with an apple-like scent in Ginjoka sake. However, the medium-chain acyl-CoA flux of the fatty acid synthesis (FAS) pathway originating from glycolytic fermentation and the precursor-induced alcohol acyltransferase (AAT) activity by natural yeast limits the ethyl caproate content in sake. Here, we established combinatorial strategies involving genetic engineering and adaptive laboratory evolution (ALE) to increase the ethyl caproate production by Saccharomyces cerevisiae. In this study, we screened Saccharomyces cerevisiae YH-2, which exhibited high ethanol and ester yields , achieving a trade-off between FAS flux and energy metabolism. Subsequently, the cerulenin-resistant mutant strain YH-2-34, after 15 passages of adaptive domestication, produced 4.13 times more caproic acid than the wild type. This increase is attributed to the G1250S variation in the FAS2 sequences, which mediate acyl-CoA chain length in the FAS pathway, thereby producing more caproyl-CoA as the precursor. While AAT activity increased 2.40 times in the mutant YH-2-34, both EEB1 and EHT1 genes, which together encode AAT responsible for esterifying ethyl caproate, played critical roles. Although pEEB1s overexpression affected cell viability and ethyl caproate production, pEHT1s overexpression successfully increased the yield of ethyl caproate during post-fermentation. Finally, the yield of YH-2-34 with EHT1 overexpression achieved a significant increase from 1.21 to 7.40 mg/L in sake fermentation. By regulating the flux from glycolytic fermentation to the FAS pathway and overexpressing AAT, we constructed a high-yield ethyl-caproate-producing Saccharomyces cerevisiae strain. This may bring practical transformations to traditional brewing industries.
Collapse
Affiliation(s)
- Mengyuan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jing Hao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Negoro H, Ishida H. Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Res 2022; 22:6825454. [PMID: 36370450 DOI: 10.1093/femsyr/foac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sake is a traditional Japanese alcoholic beverage made from rice and water, fermented by the filamentous fungi Aspergillus oryzae and the yeast Saccharomyces cerevisiae. Yeast strains, also called sake yeasts, with high alcohol yield and the ability to produce desired flavor compounds in the sake, have been isolated from the environment for more than a century. Furthermore, numerous methods to breed sake yeasts without genetic modification have been developed. The objectives of breeding include increasing the efficiency of production, improving the aroma and taste, enhancing safety, imparting functional properties, and altering the appearance of sake. With the recent development of molecular biology, the suitable sake brewing characteristics in sake yeasts, and the causes of acquisition of additional phenotypes in bred yeasts have been elucidated genetically. This mini-review summarizes the history and lineage of sake yeasts, their genetic characteristics, the major breeding methods used, and molecular biological analysis of the acquired strains. The data in this review on the metabolic mechanisms of sake yeasts and their genetic profiles will enable the development of future strains with superior phenotypes.
Collapse
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
3
|
Baba S, Sawada K, Orita R, Kimura K, Goto M, Kobayashi G. Isolation of sake yeast strains from Ariake Sea tidal flats and evaluation of their brewing characteristics. J GEN APPL MICROBIOL 2022; 68:30-37. [DOI: 10.2323/jgam.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuichiro Baba
- United Graduate School of Agricultural Sciences, Kagoshima University
| | | | - Ryo Orita
- Faculty of Agriculture, Saga University
| | - Kei Kimura
- United Graduate School of Agricultural Sciences, Kagoshima University
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University
| | - Genta Kobayashi
- United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
4
|
Development of Monascus purpureus monacolin K-hyperproducing mutant strains by synchrotron light irradiation and their comparative genome analysis. J Biosci Bioeng 2022; 133:362-368. [DOI: 10.1016/j.jbiosc.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022]
|