1
|
Liu Q, Wang H, Li X, Tian S, Wu C, Chen Y, Qian S, Zhao S, Zhang W, Cheng F, Yang G, Wang T. A highly thermostable ethyl carbamate-degrading urethanase from Thermoflavimicrobium dichotomicum. Int J Biol Macromol 2025; 307:142245. [PMID: 40112972 DOI: 10.1016/j.ijbiomac.2025.142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The carcinogen ethyl carbamate (EC) in food is a potential threat to health. Available urethanases cannot efficiently degrade EC because of their instability or low activity under acidic conditions. Here, a novel thermostable urethanase was identified in Thermoflavimicrobium dichotomicum using a database-mining approach. The enzyme displayed exceptional thermotolerance, with an optimum temperature of 75 °C, and exhibited 58.6 % of its maximum activity at 90 °C. After incubation at temperatures below 70 °C for 30 min, 100 % activity was maintained. Following treatment at 4 °C for 6 h, it retained 59-87 % of its activity at pH 4.0-5.0, demonstrating the highest acid stability reported so far. This enzyme showed good ethanol tolerance. 80.4 % of its activity was retained after incubation in 10 % (v/v) ethanol solution at 37 °C for 1 h. The enzyme exhibited the highest EC affinity (Km, 3.545 mM), and catalytic efficiency (kcat/Km, 46.75 ± 2.34 s-1·mM-1) at pH 4.5. After reacting with 200 U/L purified enzyme at 30 °C for 5 h, 62.4 % and 9.7 % of EC were degraded from rice wine samples with pH 6.0 and 4.5, respectively. Furthermore, the enzyme exhibited significant hydrolytic activity against the 2A carcinogen acrylamide. These findings suggest that this urethanase is a promising industrial enzyme.
Collapse
Affiliation(s)
- Qingtao Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China.
| | - Shufang Tian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuanchao Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shiguang Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Guoqiang Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China.
| |
Collapse
|
2
|
Sabari V L D, Rajmohan G, S B R, S S, Nagasubramanian K, G SK, Venkatachalam P. Improving the binding affinity of plastic degrading cutinase with polyethylene terephthalate (PET) and polyurethane (PU); an in-silico study. Heliyon 2025; 11:e41640. [PMID: 39877625 PMCID: PMC11773079 DOI: 10.1016/j.heliyon.2025.e41640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Plastic pollution is a worrying problem, and its degradation is a laborious process. Although enzymatic plastic breakdown is a sustainable method, drawbacks such as numerous plastic kinds of waste make the degradation challenging. Therefore, a multi-plastic degrading (MPD) enzyme becomes necessary. In this in-silico study, microorganisms and their enzymes that are known to degrade plastic polymers such as PET, PU, PVC, and PE were identified to assess their MPD capability. The cutinase of Thermobifida fusca was found to degrade both PET and PU polymers. The crystallized structure of cutinase was retrieved from PDB, and PET, PU ligands were docked using Schrodinger. However, the interactions between cutinase and the ligands were not efficient, as evidenced by the docking scores of -4.047 and -4.993 for PET and PU, respectively. Nevertheless, the interaction of the cutinase's active site with the ligands by hydrogen bond formation was promising. In this work, unconserved regions of cutinase were identified as potential mutation sites to enhance binding efficiency. In-silico Alanine Scanning Mutagenesis (ASM) and Site Saturation Mutagenesis (SSM) were performed as screening tests to find variants of cutinase with better docking scores for both ligands, specifically S136D, N28M, and S136Q. Molecular Dynamic Simulation (MDS) was performed for Wild Type (WT) cutinase, variants, and their respective complexes formed with the ligands. This simulation indicated the compactness, stability, and minimal energy of the variant complexes compared to WT complexes. Subsequent in vitro studies can ensure the improved degradation of both PET and PU by the variants.
Collapse
Affiliation(s)
- Deves Sabari V L
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Gokulnath Rajmohan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Roshine S B
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Srivaishnavi S
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Kishore Nagasubramanian
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Senthil Kumar G
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Ponnusami Venkatachalam
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| |
Collapse
|
3
|
Szleper K, Cebula M, Kovalenko O, Góra A, Raczyńska A. PUR-GEN: A web server for automated generation of polyurethane fragment libraries. Comput Struct Biotechnol J 2024; 27:127-136. [PMID: 39845943 PMCID: PMC11750484 DOI: 10.1016/j.csbj.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental. To facilitate in silico research, we introduce PUR-GEN, a web server tailored for the automated generation of PUR fragment libraries. PUR-GEN allows users to input isocyanate and alcohol structural units, facilitating the creation of combinatorial oligomer libraries enriched with conformers and compound property tables. PUR-GEN can serve as a valuable tool for designing PUR fragments to mimic PUR structure interactions with proteins, as well as characterising simplistic PUR models. To illustrate an application of the web server, we present a case study on selected four cutinases and three urethanases with experimentally confirmed PUR-degrading activity or ability to hydrolyse carbamates. The use of PUR-GEN in molecular docking of 414 generated oligomers provides an example of the pipeline for initiation of the PUR degrading enzymes discovery.
Collapse
Affiliation(s)
- Katarzyna Szleper
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
| | - Mateusz Cebula
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Oksana Kovalenko
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
| | - Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, Toulouse F-31077 Cedex 04, France
| |
Collapse
|
4
|
Raczyńska A, Góra A, André I. An overview on polyurethane-degrading enzymes. Biotechnol Adv 2024; 77:108439. [PMID: 39241969 DOI: 10.1016/j.biotechadv.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Polyurethanes (PUR) are durable synthetic polymers widely used in various industries, contributing significantly to global plastic consumption. PUR pose unique challenges in terms of degradability and recyclability, as they are characterised by intricate compositions and diverse formulations. Additives and proprietary structures used in commercial PUR formulations further complicate recycling efforts, making the effective management of PUR waste a daunting task. In this review, we delve into the complex challenge of enzymatic degradation of PUR, focusing on the structural and functional attributes of both enzymes and PUR. We also present documented native enzymes with reported efficacy in hydrolysing specific bonds within PUR, analysis of these enzyme structures, reaction mechanisms, substrate specificity, and binding site architecture. Furthermore, we propose essential features for the future redesign of enzymes to optimise PUR biodegradation efficiency. By outlining prospective research directions aimed at advancing the field of enzymatic biodegradation of PUR, we aim to contribute to the development of sustainable solutions for managing PUR waste and reducing environmental pollution.
Collapse
Affiliation(s)
- Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland; Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France; Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France.
| |
Collapse
|
5
|
Yang L, Zhao T, Zhang X, Fan T, Zhang Y, Feng Z, Liu J. Crystal structure of urethanase from Candida parapsilosis and insights into the substrate-binding through in silico mutagenesis and improves the catalytic activity and stability. Int J Biol Macromol 2024; 278:134763. [PMID: 39151849 DOI: 10.1016/j.ijbiomac.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Ethyl carbamate (EC) is classified as a Class 2A carcinogen, and is present in various fermented foods, posing a threat to human health. Urethanase (EC 3.5.1.75) can catalyze EC to produce ethanol, CO2 and NH3. The urethanase (cpUH) from Candida parapsilosis can hydrolyze EC, but its low affinity and poor stability hinder its application. Here, the structure of cpUH from Candida parapsilosis was determined with a resolution of 2.66 Å. Through sequence alignment and site-directed mutagenesis, it was confirmed that cpUH contained the catalytic triad Ser-cisSer-Lys of the amidase family. Then, the structure-oriented engineering mutant N194V of urethanase was obtained. Its urethanase activity increased by 6.12 %, the catalytic efficiency (kcat/Km) increased by 21.04 %, and the enzyme stability was also enhanced. Modeling and molecular docking analysis showed that the variant N194V changed the number of hydrogen bonds between the substrate and the catalytic residue, resulting in enhanced catalytic ability. MD simulation also demonstrated that the introduction of hydrophobic amino acid Val reduced the RMSD value and increased protein stability. The findings of this study suggest that the N194V variant exhibits significant potential for industrial applications due to its enhanced affinity for substrate binding, improved catalytic efficiency, and increased enzyme stability.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Ting Zhao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Jun Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
6
|
Liu Q, Wang H, Zhang W, Cheng F, Qian S, Li C, Chen Y, Zhu S, Wang T, Tian S. High Salt-Resistant Urethanase Degrades Ethyl Carbamate in Soy Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21266-21275. [PMID: 39268855 DOI: 10.1021/acs.jafc.4c06162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Urethanase is a promising biocatalyst for degrading carcinogen ethyl carbamate (EC) in fermented foods. However, their vulnerability to high ethanol and/or salt and acidic conditions severely limits their applications. In this study, a novel urethanase from Alicyclobacillus pomorum (ApUH) was successfully discovered using a database search. ApUH shares 49.4% sequence identity with the reported amino acid sequences. It belongs to the Amidase Signature family and has a conserved "K-S-S" catalytic triad and the characteristic "GGSS" motif. The purified enzyme overexpressed in Escherichia coli exhibits a high EC affinity (Km, 0.306 mM) and broad pH tolerance (pH 4.0-9.0), with an optimum pH 7.0. Enzyme activity remained at 58% in 12% (w/v) NaCl, and 80% in 10% (v/v) ethanol or after 1 h treatment with the same ethanol solution at 37 °C. ApUH has no hydrolytic activity toward urea. Under 30 °C, the purified enzyme (200 U/L) degraded about 15.4 and 43.1% of the EC in soy sauce samples (pH 5.0, 6.0), respectively, in 5 h. Furthermore, the enzyme also showed high activity toward the class 2A carcinogen acrylamide in foods. These attractive properties indicate their potential applications in the food industry.
Collapse
Affiliation(s)
- Qingtao Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Senhe Qian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuang Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Sibao Zhu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Shufang Tian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| |
Collapse
|
7
|
Zhang X, Zhang Y, Fan T, Feng Z, Yang L. Structure-guided engineered urethanase from Candida parapsilosis with pH and ethanol tolerance to efficiently degrade ethyl carbamate in Chinese rice wine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116335. [PMID: 38626603 DOI: 10.1016/j.ecoenv.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Urethane hydrolase can degrade the carcinogen ethyl carbamate (EC) in fermented food, but its stability and activity limit its application. In this study, a mutant G246A and a double mutant N194V/G246A with improved cpUH activity and stability of Candida parapsilosis were obtained by site-directed mutagenesis. The catalytic efficiency (Kcat/Km) of mutant G246A and double mutant N194V/G246A are 1.95 times and 1.88 times higher than that of WT, respectively. In addition, compared with WT, the thermal stability and pH stability of mutant G246A and double mutant N194V/G246A were enhanced. The ability of mutant G246A and double mutant N194V/G246A to degrade EC in rice wine was also stronger than that of WT. The mutation increased the stability of the enzyme, as evidenced by decreased root mean square deviation (RMSD) and increased hydrogen bonds between the enzyme and substrate by molecular dynamics simulation and molecular docking analysis. The molecule modification of new cpUH promotes the industrial process of EC degradation.
Collapse
Affiliation(s)
- Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
8
|
Ridley RS, Conrad RE, Lindner BG, Woo S, Konstantinidis KT. Potential routes of plastics biotransformation involving novel plastizymes revealed by global multi-omic analysis of plastic associated microbes. Sci Rep 2024; 14:8798. [PMID: 38627476 PMCID: PMC11021508 DOI: 10.1038/s41598-024-59279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.
Collapse
Affiliation(s)
- Rodney S Ridley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seongwook Woo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
9
|
Pantelic B, Siaperas R, Budin C, de Boer T, Topakas E, Nikodinovic‐Runic J. Proteomic examination of polyester-polyurethane degradation by Streptomyces sp. PU10: Diverting polyurethane intermediates to secondary metabolite production. Microb Biotechnol 2024; 17:e14445. [PMID: 38536665 PMCID: PMC10970200 DOI: 10.1111/1751-7915.14445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 10/17/2024] Open
Abstract
Global plastic waste accumulation has become omnipresent in public discourse and the focus of scientific research. Ranking as the sixth most produced polymer globally, polyurethanes (PU) significantly contribute to plastic waste and environmental pollution due to the toxicity of their building blocks, such as diisocyanates. In this study, the effects of PU on soil microbial communities over 18 months were monitored revealing that it had marginal effects on microbial diversity. However, Streptomyces sp. PU10, isolated from this PU-contaminated soil, proved exceptional in the degradation of a soluble polyester-PU (Impranil) across a range of temperatures with over 96% degradation of 10 g/L in 48 h. Proteins involved in PU degradation and metabolic changes occurring in this strain with Impranil as the sole carbon source were further investigated employing quantitative proteomics. The proposed degradation mechanism implicated the action of three enzymes: a polyester-degrading esterase, a urethane bond-degrading amidase and an oxidoreductase. Furthermore, proteome data revealed that PU degradation intermediates were incorporated into Streptomyces sp. PU10 metabolism via the fatty acid degradation pathway and subsequently channelled to polyketide biosynthesis. Most notably, the production of the tri-pyrrole undecylprodigiosin was confirmed paving the way for establishing PU upcycling strategies to bioactive metabolites using Streptomyces strains.
Collapse
Affiliation(s)
- Brana Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgradeSerbia
| | - Romanos Siaperas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensAthensGreece
| | | | | | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensAthensGreece
| | | |
Collapse
|
10
|
Xue S, Dong N, Xiong K, Guo H, Dai Y, Liang H, Chen Y, Lin X, Zhu B, Zhang S. The Screening and Isolation of Ethyl-Carbamate-Degrading Strains from Fermented Grains and Their Application in the Degradation of Ethyl Carbamate in Chinese Baijiu. Foods 2023; 12:2843. [PMID: 37569112 PMCID: PMC10416978 DOI: 10.3390/foods12152843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Ethyl carbamate (EC), a 2A carcinogen produced during the fermentation of foods and beverages, primarily occurs in distilled spirits. Currently, most studies focus on strategies for EC mitigation. In the present research, we aimed to screen strains that can degrade EC directly. Here, we report two Candida ethanolica strains (J1 and J116), isolated from fermented grains, which can reduce EC concentrations directly. These two yeasts were grown using EC as the sole carbon source, and they grew well on different carbon sources. Notably, after immobilization with chitosan, the two strains degraded EC in Chinese Baijiu by 42.27% and 27.91% in 24 h (from 253.03 ± 9.89 to 146.07 ± 1.67 and 182.42 ± 5.05 μg/L, respectively), which was better than the performance of the non-immobilized strains. Furthermore, the volatile organic compound content, investigated using gas chromatography-mass spectrometry, did not affect the main flavor substances in Chinese Baijiu. Thus, the yeasts J1 and J116 may be potentially used for the treatment and commercialization of Chinese Baijiu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.X.); (N.D.); (K.X.); (H.G.); (Y.D.); (H.L.); (Y.C.); (X.L.)
| |
Collapse
|
11
|
Zan Q, Long M, Zheng N, Zhang Z, Zhou H, Xu X, Osire T, Xia X. Improving ethanol tolerance of ethyl carbamate hydrolase by diphasic high pressure molecular dynamic simulations. AMB Express 2023; 13:32. [PMID: 36920541 PMCID: PMC10017909 DOI: 10.1186/s13568-023-01538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
Ethyl carbamate (EC) is mainly found in fermented foods and fermented alcoholic beverages, which could cause carcinogenic potential to humans. Reducing EC is one of the key research priorities to address security of fermented foods. Enzymatic degradation of EC with EC hydrolase in food is the most reliable and efficient method. However, poor tolerance to ethanol severely hinders application of EC hydrolase. In this study, the mutants of EC hydrolase were screened by diphasic high pressure molecular dynamic simulations (dHP-MD). The best variant with remarkable improvement in specific activity and was H68A/K70R/S325N, whose specific activity was approximately 3.42-fold higher than WT, and relative enzyme activity under 20% (v/v) was 5.02-fold higher than WT. Moreover, the triple mutant increased its stability by acquiring more hydration shell and forming extra hydrogen bonds. Furthermore, the ability of degrading EC of the immobilized triple mutant was both detected in mock wine and under certain reaction conditions. The stability of immobilized triple mutant and WT were both improved, and immobilized triple mutant degraded nearly twice as much EC as that of immobilized WT. Overall, dHP-MD was proved to effectively improve enzyme activity and ethanol tolerance for extent application at industrial scale.
Collapse
Affiliation(s)
- Qijia Zan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xinjie Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
12
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Yao X, Kang T, Pu Z, Zhang T, Lin J, Yang L, Yu H, Wu M. Sequence and Structure-Guided Engineering of Urethanase from Agrobacterium tumefaciens d3 for Improved Catalytic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7267-7278. [PMID: 35653287 DOI: 10.1021/acs.jafc.2c01406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amidase from Agrobacterium tumefaciens d3 (AmdA) degrades the carcinogenic ethyl carbamate (EC) in alcoholic beverages. However, its limited catalytic activity hinders practical applications. Here, multiple sequence alignment was first used to predict single variants with improved activity. Afterward, AlphaFold 2 was applied to predict the three-dimensional structure of AmdA and 21 amino acids near the catalytic triad were randomized by saturation mutagenesis. Each of the mutation libraries was then screened, and the improved single variants were combined to obtain the best double variant I97L/G195A that showed a 3.1-fold increase in the urethanase activity and a 1.5-fold increase in ethanol tolerance. MD simulations revealed that the mutations shortened the distance between catalytic residues and the substrate and enhanced the occurrence of a critical hydrogen bond in the catalytic pocket. This study displayed a useful strategy to engineer an amidase for the improvement of urethanase activity, and the variant obtained provided a good candidate for applications in the food industry.
Collapse
Affiliation(s)
- Xiumiao Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tingting Kang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhongji Pu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733 Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, P. R. China
| | - Tao Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, P. R. China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733 Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, P. R. China
| | - Haoran Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733 Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, P. R. China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, P. R. China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 31800, P. R. China
| |
Collapse
|
14
|
Features and application potential of microbial urethanases. Appl Microbiol Biotechnol 2022; 106:3431-3438. [PMID: 35536404 DOI: 10.1007/s00253-022-11953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Urethanase (EC 3.5.1.75) can reduce ethyl carbamate (EC), a group 2A carcinogen found in foods and liquor. However, it is not yet commercially available. Urethanase has been detected as an intracellular enzyme from yeast, filamentous fungi, and bacteria. Based on the most recent progress in the sequence analysis of this enzyme, it was observed that amidase-type enzyme can degrade EC. All five enzymes had highly conserved sequences of amidase signature family, and their molecular masses were in the range of 52-62 kDa. The enzymes of Candida parapsilosis and Aspergillus oryzae formed a homotetramer, and that of Rhodococcus equi strain TB-60 existed as a monomer. Most urethanases exhibited amidase activity, and those of C. parapsilosis and A. oryzae also demonstrated high activity against acrylamide, which is a group 2A carcinogen. It was recently reported that urease and esterase also exhibited urethanase activity. Although research on the enzymatic degradation of EC has been very limited, recently some sequences of EC-degrading enzyme have been elucidated, and it is anticipated that new enzymes would be developed and applied into practical use. KEY POINTS: • Recently, some urethanase sequences have been elucidated • The amino acid residues that formed the catalytic triad were conserved • Urethanase shows amidase activity and can also degrade acrylamide.
Collapse
|
15
|
Dong N, Xue S, Guo H, Xiong K, Lin X, Liang H, Ji C, Huang Z, Zhang S. Genetic Engineering Production of Ethyl Carbamate Hydrolase and Its Application in Degrading Ethyl Carbamate in Chinese Liquor. Foods 2022; 11:foods11070937. [PMID: 35407026 PMCID: PMC8997832 DOI: 10.3390/foods11070937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Ethyl carbamate (EC), classified as a Group 2A carcinogen, is most abundant in the fermented foods, such as Cachaca, Shaoxing wine, and Chinese liquor (baijiu). Although biodegradation can reduce its concentration, a high ethanol concentration and acidic environment often limit its degradation. In the present study, a novel ethyl carbamate hydrolase (ECH) with high specificity to EC was isolated from Acinetobacter calcoaceticus, and its enzymatic properties and EC degradability were investigated. ECH was immobilized to resist extreme environmental conditions, and the flavor substance changes were explored by gas chromatography-mass spectrometry (GC/MS). The specific enzymatic activity of ECH was 68.31 U/mg. Notably, ECH exhibited excellent thermal stability and tolerance to sodium chloride and high ethanol concentration (remaining at 40% activity in 60% (v/v) ethanol, 1 h). The treatment of immobilized ECH for 12 h decreased the EC concentration in liquor by 71.6 μg/L. Furthermore, the immobilized ECH exerted less effect on its activity and on the flavor substances, which could be easily filtrated during industrial production.
Collapse
Affiliation(s)
- Naihui Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
| | - Siyu Xue
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
| | - Hui Guo
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
| | - Kexin Xiong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
| | - Huipeng Liang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
| | - Chaofan Ji
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
| | - Zhiguo Huang
- Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644005, China;
| | - Sufang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (N.D.); (S.X.); (H.G.); (K.X.); (X.L.); (H.L.); (C.J.)
- Correspondence: ; Tel.: +86-0411-86318675
| |
Collapse
|