1
|
Okamura K, Badr S, Ichida Y, Yamada A, Sugiyama H. Modeling of cell cultivation for monoclonal antibody production processes considering lactate metabolic shifts. Biotechnol Prog 2024; 40:e3486. [PMID: 38924316 PMCID: PMC11659809 DOI: 10.1002/btpr.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.
Collapse
Affiliation(s)
- Kozue Okamura
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Sara Badr
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Yusuke Ichida
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Akira Yamada
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Hirokazu Sugiyama
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Liu MM, Feng XL, Qi C, Zhang SE, Zhang GL. The significance of single-cell transcriptome analysis in epididymis research. Front Cell Dev Biol 2024; 12:1357370. [PMID: 38577504 PMCID: PMC10991796 DOI: 10.3389/fcell.2024.1357370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
As a crucial component of the male reproductive system, the epididymis plays multiple roles, including sperm storage and secretion of nutritive fluids for sperm development and maturation. The acquisition of fertilization capacity by sperm occurs during their transport through the epididymis. Compared with the testis, little has been realized about the importance of the epididymis. However, with the development of molecular biology and single-cell sequencing technology, the importance of the epididymis for male fertility should be reconsidered. Recent studies have revealed that different regions of the epididymis exhibit distinct functions and cell type compositions, which are likely determined by variations in gene expression patterns. In this research, we primarily focused on elucidating the cellular composition and region-specific gene expression patterns within different segments of the epididymis and provided detailed insights into epididymal function in male fertility.
Collapse
Affiliation(s)
- Meng-Meng Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin-Lei Feng
- Animal Products Quality and Safety Center of Shandong Province, Jinan, Shandong, China
| | - Chao Qi
- Provincial Animal Husbandry Station of Shandong Province, Jinan, Shandong, China
| | - Shu-Er Zhang
- Provincial Animal Husbandry Station of Shandong Province, Jinan, Shandong, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Tanemura H, Kitamura R, Yamada Y, Hoshino M, Kakihara H, Nonaka K. Comprehensive modeling of cell culture profile using Raman spectroscopy and machine learning. Sci Rep 2023; 13:21805. [PMID: 38071246 PMCID: PMC10710501 DOI: 10.1038/s41598-023-49257-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are widely utilized in the production of antibody drugs. To ensure the production of large quantities of antibodies that meet the required specifications, it is crucial to monitor and control the levels of metabolites comprehensively during CHO cell culture. In recent years, continuous analysis methods employing on-line/in-line techniques using Raman spectroscopy have attracted attention. While these analytical methods can nondestructively monitor culture data, constructing a highly accurate measurement model for numerous components is time-consuming, making it challenging to implement in the rapid research and development of pharmaceutical manufacturing processes. In this study, we developed a comprehensive, simple, and automated method for constructing a Raman model of various components measured by LC-MS and other techniques using machine learning with Python. Preprocessing and spectral-range optimization of data for model construction (partial least square (PLS) regression) were automated and accelerated using Bayes optimization. Subsequently, models were constructed for each component using various model construction techniques, including linear regression, ridge regression, XGBoost, and neural network. This enabled the model accuracy to be improved compared with PLS regression. This automated approach allows continuous monitoring of various parameters for over 100 components, facilitating process optimization and process monitoring of CHO cells.
Collapse
Affiliation(s)
- Hiroki Tanemura
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-Machi, Oura-Gun, Gunma, 370-0503, Japan.
| | - Ryunosuke Kitamura
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-Machi, Oura-Gun, Gunma, 370-0503, Japan
| | - Yasuko Yamada
- Analytical & Quality Evaluation Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka, Kanagawa, 254-0014, Japan
| | - Masato Hoshino
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-Machi, Oura-Gun, Gunma, 370-0503, Japan
| | - Hirofumi Kakihara
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-Machi, Oura-Gun, Gunma, 370-0503, Japan
| | - Koichi Nonaka
- Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-Machi, Oura-Gun, Gunma, 370-0503, Japan
| |
Collapse
|
4
|
Ying B, Kawabe Y, Zheng F, Amamoto Y, Kamihira M. High-Level Production of scFv-Fc Antibody Using an Artificial Promoter System with Transcriptional Positive Feedback Loop of Transactivator in CHO Cells. Cells 2023; 12:2638. [PMID: 37998372 PMCID: PMC10670205 DOI: 10.3390/cells12222638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
With the increasing demand for therapeutic antibodies, CHO cells have become the de facto standard as producer host cells for biopharmaceutical production. High production yields are required for antibody production, and developing a high-titer production system is increasingly crucial. This study was established to develop a high-production system using a synthetic biology approach by designing a gene expression system based on an artificial transcription factor that can strongly induce the high expression of target genes in CHO cells. To demonstrate the functionality of this artificial gene expression system and its ability to induce the high expression of target genes in CHO cells, a model antibody (scFv-Fc) was produced using this system. Excellent results were obtained with the plate scale, and when attempting continuous production in semi-continuous cultures using bioreactor tubes with high-cell-density suspension culture using a serum-free medium, high-titer antibody production at the gram-per-liter level was achieved. Shifting the culture temperature to a low temperature of 33 °C achieved scFv-Fc concentrations of up to 5.5 g/L with a specific production rate of 262 pg/(cell∙day). This artificial gene expression system should be a powerful tool for CHO cell engineering aimed at constructing high-yield production systems.
Collapse
Affiliation(s)
| | | | | | | | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (B.Y.); (Y.K.); (F.Z.); (Y.A.)
| |
Collapse
|
5
|
Hasebe Y, Yamada M, Utoh R, Seki M. Expansion of Chinese hamster ovary cells via a loose cluster-assisted suspension culture using cell-sized gelatin microcarriers. J Biosci Bioeng 2023; 135:417-422. [PMID: 36931921 DOI: 10.1016/j.jbiosc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
Technologies for efficiently expanding Chinese hamster ovary (CHO) cells, the primary host cells for antibody production, are of growing industrial importance. Various processes for the use of microcarriers in CHO suspension cultures have been developed, but there have been very few studies on cell-adhesive microcarriers that are similar in size to cells. In this study, we proposed a new approach to suspension cultures of CHO cells using cell-sized condensed and crosslinked gelatin microparticles (GMPs) as carriers. Unlike commercially available carriers with sizes typically greater than 100 μm, each cell can adhere to the surface of multiple particles and form loose clusters with voids. We prepared GMPs of different average diameters (27 and 48 μm) and investigated their effects on cell adhesion and cluster formation. In particular, small GMPs promoted cell proliferation and increased IgG4 production by the antibody-producing CHO cell line. The data obtained in this study suggest that cell-sized particles, rather than larger ones, enhance cell proliferation and function, providing useful insights for improving suspension-culture-based cell expansion and cell-based biologics production for a wide range of applications.
Collapse
Affiliation(s)
- Yuken Hasebe
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Tanemura H, Masuda K, Okumura T, Takagi E, Kajihara D, Kakihara H, Nonaka K, Ushioda R. Development of a stable antibody production system utilizing an Hspa5 promoter in CHO cells. Sci Rep 2022; 12:7239. [PMID: 35610229 PMCID: PMC9130236 DOI: 10.1038/s41598-022-11342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for manufacturing antibody drugs. We attempted to clone a novel high-expression promoter for producing monoclonal antibodies (mAbs) based on transcriptome analysis to enhance the transcriptional abundance of mAb genes. The efficacy of conventional promoters such as CMV and hEF1α decrease in the latter phase of fed-batch cell culture. To overcome this, we screened genes whose expression was maintained or increased throughout the culture period. Since CHO cells have diverse genetic expression depending on the selected clone and culture medium, transcriptome analysis was performed on multiple clones and culture media anticipated to be used in mAb manufacturing. We thus acquired the Hspa5 promoter as a novel high-expression promoter, which uniquely enables mAb productivity per cell to improve late in the culture period. Productivity also improved for various IgG subclasses under Hspa5 promoter control, indicating this promoter’s potential universal value for mAb production. Finally, it was suggested that mAb production with this promoter is correlated with the transcription levels of endoplasmic reticulum stress-related genes. Therefore, mAb production utilizing the Hspa5 promoter might be a new method for maintaining protein homeostasis and achieving stable expression of introduced mAb genes during fed-batch culture.
Collapse
Affiliation(s)
- Hiroki Tanemura
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Kenji Masuda
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Takeshi Okumura
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Eri Takagi
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Daisuke Kajihara
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Hirofumi Kakihara
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Koichi Nonaka
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto City, 603-8555, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto City, 603-8555, Japan.
| |
Collapse
|
7
|
Zhang JH, Shan LL, Liang F, Du CY, Li JJ. Strategies and Considerations for Improving Recombinant Antibody Production and Quality in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:856049. [PMID: 35316944 PMCID: PMC8934426 DOI: 10.3389/fbioe.2022.856049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Recombinant antibodies are rapidly developing therapeutic agents; approximately 40 novel antibody molecules enter clinical trials each year, most of which are produced from Chinese hamster ovary (CHO) cells. However, one of the major bottlenecks restricting the development of antibody drugs is how to perform high-level expression and production of recombinant antibodies. The high-efficiency expression and quality of recombinant antibodies in CHO cells is determined by multiple factors. This review provides a comprehensive overview of several state-of-the-art approaches, such as optimization of gene sequence of antibody, construction and optimization of high-efficiency expression vector, using antibody expression system, transformation of host cell lines, and glycosylation modification. Finally, the authors discuss the potential of large-scale production of recombinant antibodies and development of culture processes for biopharmaceutical manufacturing in the future.
Collapse
Affiliation(s)
- Jun-He Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Jun-He Zhang,
| | - Lin-Lin Shan
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Chen-Yang Du
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Jing-Jing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|