1
|
Zheng F, Yang J, Luo H, Sun Q, Zhang X, Li R, He X, Zhao G. Hydrolysis Mechanism of Multimodular Endoglucanases with Distinctive Domain Composition in the Saccharification of Cellulosic Substrates. Biomacromolecules 2024; 25:6007-6016. [PMID: 39207087 DOI: 10.1021/acs.biomac.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Two multimodular endoglucanases in glycoside hydrolase family 5, ReCel5 and ElCel5, share 73% identity and exhibit similar modular structures: family 1 carbohydrate-binding module (CBM1); catalytic domain; CBMX2; module of unknown function. However, they differed in their biochemical properties and catalytic performance. ReCel5 showed optimal activity at pH 4.0 and 70 °C, maintaining stability at 70 °C (>80% activity). Conversely, ElCel5 is optimal at pH 3.0 and 50 °C (>50% activity at 50 °C). ElCel5 excels in degrading CMC-Na (256 U/mg vs 53 U/mg of ReCel5). Five domain-truncated (TM1-TM5) and four domain-replaced (RM1-RM4) mutants of ReCel5 with the counterparts of ElCel5 were constructed, and their enzymatic properties were compared with those of the wild type. Only RM1, with ElCel5-CBM1, displayed enhanced thermostability and activity. The hydrolysis of pretreated corn stover was reduced in most TM and RM mutants. Molecular dynamics simulations revealed interdomain interactions within the multimodular endoglucanase, potentially affecting its structural stability and complex biological catalytic processes.
Collapse
Affiliation(s)
- Fei Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Junzhao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyang Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xinrui Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Ruilin Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangwei He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guozhu Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Huang J, Wang J, Liu S. Advances in the production of fungi-derived lignocellulolytic enzymes using agricultural wastes. Mycology 2023; 15:523-537. [PMID: 39678642 PMCID: PMC11636153 DOI: 10.1080/21501203.2023.2253827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2024] Open
Abstract
Lignocellulolytic enzymes play an important role in various industrial applications as well as the sustainable valorisation of lignocellulosic materials. Enzyme production using lignocellulosic fungi has shown great advantages such as high enzyme diversity, high production efficiency, and the availability of solid waste as raw materials. Agricultural waste, an abundant and non-food competitive feedstock, can be used to produce fungal lignocellulolytic enzymes. Pretreatment helps break down the complex structure of the raw material, thereby significantly improving product yield but also requiring more energy consumption. Multiple fermentation technologies, including submerged fermentation, solid-state fermentation, and co-culture, can be used for producing lignocellulolytic enzymes. Process optimisation may promote the yield and productivity of such enzymes without additional investment. Genetic engineering is also useful for enhancing enzyme production to meet industrial requirements. This review summarises the research progress in the fungal production of lignocellulolytic enzymes from various agricultural wastes via advanced fermentation strategies. It aims to provide technical references for the scale-up production of fungal lignocellulolytic enzymes.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
3
|
Geng A, Jin M, Li N, Tu Z, Zhu D, Xie R, Wang Q, Sun J. Arabinan hydrolysis by GH43 enzymes of Hungateiclostridium clariflavum and the potential synergistic mechanisms. Appl Microbiol Biotechnol 2022; 106:7793-7803. [PMID: 36251023 DOI: 10.1007/s00253-022-12238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Glycoside hydrolase family 43 (GH43) represents a major source of arabinan- and arabinoxylan-active enzymes. Interestingly, some microbes remarkably enriched GH genes of this family, with the reason unknown. Hungateiclostridium clariflavum DSM 19,732 is an efficient lignocellulose degrader, which harbors up to 7 GH43 genes in its genome. We cloned three of the seven GH43 genes, and found that Abn43A is a unique endoarabinanase, which unprecedently showed approximately two times larger activity on sugar beet arabinan (116.8 U/mg) than that on linear arabinan, and it is efficient in arabinooligosaccharide production. Abn43B is an exoarabinanase which directly releases arabinose from linear arabinan. Abn43C is an α-L-arabinofuranosidase which is capable of splitting the arabinose side-chains from arabinooligosaccharides, arabinoxylooligosaccharides, and arabinoxylan. Most importantly, the three GH43 enzymes synergized in hydrolyzing arabinan. Compared to Abn43B alone, a supplement of Abn43A increased the arabinose production from linear arabinan by 150%, reaching 0.44 g/g arabinan. Moreover, an addition of Abn43C to Abn43A and Abn43B boosted the arabinose production from sugar beet arabinan by 15 times, reaching 0.262 g/g arabinan. Our work suggested the intensified functions of multiple GH43 enzymes toward arabinan degradation in H. clariflavum, and a potential synergetic mechanism among the three GH43 enzymes is suggested. KEY POINTS: • Endoarabinanase GH43A prefers branched substrate to linear one • Exoarabinanase GH43B can directly release arabinose from linear arabinan • The three GH43 enzymes synergized in arabinan hydrolysis.
Collapse
Affiliation(s)
- Alei Geng
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Meng Jin
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Nana Li
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhuowei Tu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rongrong Xie
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qianqian Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|