1
|
Liu Y, Liu Y, Cao Y, Wang C. Pretreatment of Palm Kernel Cake by Enzyme-Bacteria and Its Effects on Growth Performance in Broilers. Animals (Basel) 2025; 15:116. [PMID: 39858116 PMCID: PMC11758666 DOI: 10.3390/ani15020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
This study aimed to improve palm kernel cake by reducing anti-nutritional factors with enzymes and enhancing its nutritional value through microbial fermentation. It also examined the effects of these treatments on palm kernel cake in broiler chicken diets. Palm kernel cake was hydrolyzed using xylanase and mannanase under various conditions. Co-fermentation with Lactobacillus plantarum QZSL and Saccharomyces boulardii mafic-1701 was assessed under different parameters. In the animal experiment, 350 male Cobb broiler chicks were divided into seven groups: a control group provided a corn-soybean meal diet, and groups provided diets containing 10% and 20% palm kernel cake, enzyme-hydrolyzed palm kernel cake, and bacteria-enzyme co-fermented palm kernel cake. Optimal conditions for enzymatic hydrolysis of palm kernel cake are 55 °C, pH 3.0, and a 1:2.5 feed-to-water ratio. Adding 0.1 g xylanase and 1.0 g mannanase to 10 g palm kernel cake for 12 h increased reduced sugar content to 139.33 mg/g and reduced neutral detergent fiber to 43.92%. For solid-state fermentation with Lactobacillus plantarum QZSL and Saccharomyces boulardii mafic-1701, optimal conditions are 37 °C, 5% inoculation, 20% moisture, 3 days fermentation, and a 7:3 bacterial ratio. Animal experiments showed significant improvements in broilers' growth, nutrient digestibility, antioxidant capacity, immune function, and intestinal health. Enzyme-bacteria co-fermentation of palm kernel cake boosts its nutritional value and enhances broiler intestinal health.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.L.); (Y.C.)
| | - Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.L.); (Y.C.)
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.L.); (Y.C.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.L.); (Y.C.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Qamar H, He R, Li Y, Song M, Deng D, Cui Y, Yu M, Ma X. Metabolome and Metagenome Integration Unveiled Synthesis Pathways of Novel Antioxidant Peptides in Fermented Lignocellulosic Biomass of Palm Kernel Meal. Antioxidants (Basel) 2024; 13:1253. [PMID: 39456506 PMCID: PMC11505245 DOI: 10.3390/antiox13101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Approximately one-third of the entire world's food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. To evaluate the impact of enzymatic pretreatment and Lactobacillus plantarum and Lactobacillus reuteri fermentation upon the antioxidant activity of PKM, we implemented integrated metagenomics and metabolomics approaches. The substantially enhanced (p < 0.05) property of free radicals scavenging, as well as total flavonoids and polyphenols, demonstrated that the biotreated PKM exhibited superior antioxidant capacity. Non-targeted metabolomics disclosed that the Lactobacillus fermentation resulted in substantial (p < 0.05) biosynthesis of 25 unique antioxidant biopeptides, along with the increased (p < 0.05) enrichment ratio of the isoflavonoids and secondary metabolites biosynthesis pathways. The 16sRNA sequencing and correlation analysis revealed that Limosilactobacillus reuteri, Pediococcus acidilactici, Lacticaseibacillus paracasei, Pediococcus pentosaceus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and polysaccharide lyases had significantly dominated (p < 0.05) proportions in PMEL, and these bacterial species were strongly (p < 0.05) positively interrelated with antioxidants peptides. Fermented PKM improves nutritional value by enhancing beneficial probiotics, enzymes, and antioxidants and minimizing anti-nutritional factors, rendering it an invaluable feed ingredient and gut health promoter for animals, multifunctional food elements, or as an ingredient in sustainable plant-based diets for human utilization, and functioning as a culture substrate in the food sector.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
3
|
Wang P, Pei X, Zhou W, Zhao Y, Gu P, Li Y, Gao J. Research and application progress of microbial β-mannanases: a mini-review. World J Microbiol Biotechnol 2024; 40:169. [PMID: 38630389 DOI: 10.1007/s11274-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. β-Mannanase is the principal mannan-degrading enzyme, which breaks down the β-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of β-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial β-mannanases are reviewed, the future research directions for microbial β-mannanases are also outlined.
Collapse
Affiliation(s)
- Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Xiaohui Pei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, PR China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd, Taian, 271400, PR China
| | - Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, 273399, PR China.
| |
Collapse
|