1
|
Chen X, Li C, Qiu X, Chen M, Xu Y, Li S, Li Q, Wang L. CRISPR/Cas9-based iterative multi-copy integration for improved metabolite yields in Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:629-637. [PMID: 40151793 PMCID: PMC11946509 DOI: 10.1016/j.synbio.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
High-copy integration of key genes offers a promising strategy for efficient biosynthesis of valuable natural products in Saccharomyces cerevisiae. However, traditional multi-copy gene integration methods meet challenges including low efficiency and labor-intensive screening processes. In this study, we developed the IMIGE (Iterative Multi-copy Integration by Gene Editing) system, a CRISPR/Cas9-based approach that exploits both δ and rDNA repetitive sequences for simultaneous multi-copy integrations in S. cerevisiae. This system combines the mixture of Cas9-sgRNA expression vectors with a split-marker strategy for efficient donor DNA assembly in vivo and enables rapid, iterative screening through growth-related phenotypes. When applied to the biosynthesis of ergothioneine and cordycepin, the IMIGE system achieved significant yield improvements, with titers of 105.31 ± 1.53 mg/L and 62.01 ± 2.4 mg/L, respectively, within just two screening cycles (5.5-6 days in total). These yields represent increases of 407.39 % and 222.13 %, respectively, compared to the strains with episomal expression. By streamlining the integration process, utilizing growth-based selection, and minimizing screening demands in both equipment and labor, the IMIGE system could provide an efficient and scalable platform for high-throughput strain engineering, facilitating enhanced microbial production of a wide range of bioproducts.
Collapse
Affiliation(s)
- Ximei Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Chenyang Li
- School of Life and Health, Dalian University, Dalian, 116622, China
| | - Xin Qiu
- School of Life and Health, Dalian University, Dalian, 116622, China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yongping Xu
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Shuying Li
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
| | - Qian Li
- School of Life and Health, Dalian University, Dalian, 116622, China
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Postdoctoral Workstation of Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116000, China
| |
Collapse
|
2
|
Gao L, Yuan J, Hong K, Ma NL, Liu S, Wu X. Technological advancement spurs Komagataella phaffii as a next-generation platform for sustainable biomanufacturing. Biotechnol Adv 2025; 82:108593. [PMID: 40339766 DOI: 10.1016/j.biotechadv.2025.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Biomanufacturing stands as a cornerstone of sustainable industrial development, necessitating a shift toward non-food carbon feedstocks to alleviate agricultural resource competition and advance a circular bioeconomy. Methanol, a renewable one‑carbon substrate, has emerged as a pivotal candidate due to its abundance, cost-effectiveness, and high reduction potential, further bolstered by breakthroughs in CO₂ hydrogenation-based synthesis. Capitalizing on this momentum, the methylotrophic yeast Komagataella phaffii has undergone transformative technological upgrades, evolving from a conventional protein expression workhorse into an intelligent bioproduction chassis. This paradigm shift is fundamentally driven by converging innovations across CRISPR-empowered advancement in genome editing and AI-powered metabolic pathway design in K. phaffii. The integration of CRISPR systems with droplet microfluidics high-throughput screening has redefined strain engineering efficiency, achieving much higher editing precision than traditional homologous recombination while compressing the "design-build-test-learn" cycle. Concurrently, machine learning-enhanced genome-scale metabolic models facilitate dynamic flux balancing, enabling simultaneous improvements in product titers, carbon yields, and volumetric productivity. Finally, technological advancement promotes the application of K. phaffii, including directing more efficiently metabolic flux toward nutrient products, and strengthening efficient synthesis of excreted proteins. As DNA synthesis automation and robotic experimentation platforms mature, next-generation breakthroughs in genome modification, cofactor engineering, and AI-guided autonomous evolution will further cement K. phaffii as a next-generation platform for decarbonizing global manufacturing paradigms. This technological trajectory positions methanol-based biomanufacturing as a cornerstone of the low-carbon circular economy.
Collapse
Affiliation(s)
- Le Gao
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China.
| | - Jie Yuan
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Kai Hong
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Nyuk Ling Ma
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Malaysia
| | - Shuguang Liu
- Beijing Chasing future Biotechnology Co., Ltd, Beijing, China
| | - Xin Wu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China.
| |
Collapse
|
3
|
Wang Z, Qi X, Ren X, Lin Y, Zeng F, Wang Q. Synthetic evolution of Saccharomyces cerevisiae for biomanufacturing: Approaches and applications. MLIFE 2025; 4:1-16. [PMID: 40026576 PMCID: PMC11868838 DOI: 10.1002/mlf2.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 03/05/2025]
Abstract
The yeast Saccharomyces cerevisiae is a well-studied unicellular eukaryote with a significant role in the biomanufacturing of natural products, biofuels, and bulk and value-added chemicals, as well as the principal model eukaryotic organism utilized for fundamental research. Robust tools for building and optimizing yeast chassis cells were made possible by the quick development of synthetic biology, especially in engineering evolution. In this review, we focused on methods and tools from synthetic biology that are used to design and engineer S. cerevisiae's evolution. A detailed discussion was held regarding transcriptional regulation, template-dependent and template-free approaches. Furthermore, the applications of evolved S. cerevisiae were comprehensively summarized. These included improving environmental stress tolerance and raising cell metabolic performance in the production of biofuels and bulk and value-added chemicals. Finally, the future considerations were briefly discussed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Science & TechnologyHebei Agricultural UniversityCangzhouChina
| | - Xianni Qi
- Key Laboratory of Engineering Biology for Low‐carbon Manufacturing, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Center of Technology Innovation for Synthetic BiologyTianjinChina
| | - Xinru Ren
- College of Science & TechnologyHebei Agricultural UniversityCangzhouChina
| | - Yuping Lin
- Key Laboratory of Engineering Biology for Low‐carbon Manufacturing, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Fanli Zeng
- College of Life SciencesHebei Agricultural UniversityBaodingChina
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low‐carbon Manufacturing, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Center of Technology Innovation for Synthetic BiologyTianjinChina
| |
Collapse
|
4
|
Han S, Wu K, Wang Y, Li F, Chen Y. Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast. Synth Syst Biotechnol 2024; 9:861-870. [PMID: 39777162 PMCID: PMC11704421 DOI: 10.1016/j.synbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025] Open
Abstract
Saccharomyces cerevisiae, a widely utilized model organism, has seen continuous updates to its genome-scale metabolic model (GEM) to enhance the prediction performance for metabolic engineering and systems biology. This study presents an auxotrophy-based curation of the yeast GEM, enabling facile upgrades to yeast GEMs in future endeavors. We illustrated that the curation bolstered the predictive capability of the yeast GEM particularly in predicting auxotrophs without compromising accuracy in other simulations, and thus could be an effective manner for GEM refinement. Last, we leveraged the curated yeast GEM to systematically predict auxotrophs, thereby furnishing a valuable reference for the design of nutrient-dependent cell factories and synthetic yeast consortia.
Collapse
Affiliation(s)
- Siyu Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feiran Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
5
|
Omar MN, Minggu MM, Nor Muhammad NA, Abdul PM, Zhang Y, Ramzi AB. Towards consolidated bioprocessing of biomass and plastic substrates for semi-synthetic production of bio-poly(ethylene furanoate) (PEF) polymer using omics-guided construction of artificial microbial consortia. Enzyme Microb Technol 2024; 177:110429. [PMID: 38537325 DOI: 10.1016/j.enzmictec.2024.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
Poly(ethylene furanoate) (PEF) plastic is a 100% renewable polyester that is currently being pursued for commercialization as the next-generation bio-based plastic. This is in line with growing demand for circular bioeconomy and new plastics economy that is aimed at minimizing plastic waste mismanagement and lowering carbon footprint of plastics. However, the current catalytic route for the synthesis of PEF is impeded with technical challenges including high cost of pretreatment and catalyst refurbishment. On the other hand, the semi-biosynthetic route of PEF plastic production is of increased biotechnological interest. In particular, the PEF monomers (Furan dicarboxylic acid and ethylene glycol) can be synthesized via microbial-based biorefinery and purified for subsequent catalyst-mediated polycondensation into PEF. Several bioengineering and bioprocessing issues such as efficient substrate utilization and pathway optimization need to be addressed prior to establishing industrial-scale production of the monomers. This review highlights current advances in semi-biosynthetic production of PEF monomers using consolidated waste biorefinery strategies, with an emphasis on the employment of omics-driven systems biology approaches in enzyme discovery and pathway construction. The roles of microbial protein transporters will be discussed, especially in terms of improving substrate uptake and utilization from lignocellulosic biomass, as well as from depolymerized plastic waste as potential bio-feedstock. The employment of artificial bioengineered microbial consortia will also be highlighted to provide streamlined systems and synthetic biology strategies for bio-based PEF monomer production using both plant biomass and plastic-derived substrates, which are important for circular and new plastics economy advances.
Collapse
Affiliation(s)
- Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Matthlessa Matthew Minggu
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia.
| |
Collapse
|
6
|
Nouri N, Sadeghi L, Marefat A. Production of alkaline protease by Aspergillus niger in a new combinational paper waste culture medium. J Biosci Bioeng 2024; 137:173-178. [PMID: 38242758 DOI: 10.1016/j.jbiosc.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Enzymes derived from microbial sources have gained increasing popularity in industrial applications over the past decades. Despite the high production cost, alkaline proteases have wide applications in industries such as tanneries, food production, and detergents. In recent years, there has been a shift towards utilizing natural carbon sources for cultivating microorganisms and extracting proteases in order to reduce production costs. This study aimed to investigate the biochemical and kinetic properties of protease enzymes obtained from Aspergillus niger cultivated in a paper waste medium and compare with the enzyme produced in a basal medium. Glucose is a more favorable carbon source compared to cellulose, so paper waste was pretreated with cellulose-degrading bacteria to convert cellulose into smaller carbohydrates. After the growth of A. niger in basal and combinational media, the enzymatic properties were compared between the extracted enzymes by using casein as substrate. The results demonstrated that A. niger could produce protease enzymes in the paper waste medium similar to the basal medium with more than 5-fold cost saving. The specific activity of the enzymes isolated from the basal and paper waste media was calculated to be 184.95 ± 10.56 U ml-1 and 169.88 ± 11.05 U ml-1, respectively. Carbon sources did not affect the optimum pH and temperature of the protease enzyme, which were found to be 8 and 37 °C, respectively. This study provides valuable insights into the production of alkaline protease from A. niger using a combinational medium (paper waste pretreated by cellulose-degrading bacteria), offering a cost-effective approach for industrial applications.
Collapse
Affiliation(s)
- Negin Nouri
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Arezu Marefat
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
7
|
Zhao M, Ma J, Zhang L, Qi H. Engineering strategies for enhanced heterologous protein production by Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:32. [PMID: 38247006 PMCID: PMC10801990 DOI: 10.1186/s12934-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Microbial proteins are promising substitutes for animal- and plant-based proteins. S. cerevisiae, a generally recognized as safe (GRAS) microorganism, has been frequently employed to generate heterologous proteins. However, constructing a universal yeast chassis for efficient protein production is still a challenge due to the varying properties of different proteins. With progress in synthetic biology, a multitude of molecular biology tools and metabolic engineering strategies have been employed to alleviate these issues. This review first analyses the advantages of protein production by S. cerevisiae. The most recent advances in improving heterologous protein yield are summarized and discussed in terms of protein hyperexpression systems, protein secretion engineering, glycosylation pathway engineering and systems metabolic engineering. Furthermore, the prospects for efficient and sustainable heterologous protein production by S. cerevisiae are also provided.
Collapse
Affiliation(s)
- Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jianfan Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|