1
|
Qingshan L, Ruizhe Y, Lingying X, Yulong P, Qianyuan D, Xian W, Yue L, Yongbo X, Xingwang W, Mengqian X. Rhizosphere microbial community assembly as influenced by reductive soil disinfestation to resist successive cropping obstacle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1760-1770. [PMID: 39390738 DOI: 10.1002/jsfa.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Reductive soil disinfestation (RSD), which involves creating anaerobic conditions and incorporating large amounts of organic materials into the soil, has been identified as a reliable strategy for reducing soilborne diseases in successive cropping systems. However, limited research exists on the connections between soil microorganism composition and plant diseases under various types of organic material applications. This study aimed to evaluate the effects of distinct RSD strategies (control without soil amendment; RSD with 1500 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder and 37.5-41.3 kg ha-1 microbial agent) on the plant disease index, bacterial community composition and network structure in rhizosphere soil. RESULTS RSD treatments significantly reduced the occurrence of black shank disease in tobacco and increased soil bacterial diversity. High amounts of molasses powder in RSD treatments further enhanced disease inhibition and reduced fungal abundance and Shannon index. RSD also increased the relative abundance of bacterial phylum Firmicutes and fungal phylum Ascomycota, while decreasing the relative abundance of bacterial phyla Chloroflexi and Acidobacteriota and fungal phylum Basidiomycota in rhizosphere soil. A multiple regression model identified bacterial positive cohesion as the primary factor influencing the plant disease index, with a greater impact than bacterial negative cohesion and community stability. The competition among beneficial bacteria for creating a healthy rhizosphere environment is likely a key factor in the success of RSD in reducing plant disease risk. CONCLUSION RSD, especially with higher rates of molasses powder, is a viable strategy for controlling black shank disease in tobacco and promoting soil health by fostering beneficial microbial communities. This study provides guidelines for soil management and plant disease prevention. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Qingshan
- School of Environments and Resource, Anqing Normal University, Anqing, China
| | - Yang Ruizhe
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Xu Lingying
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Peng Yulong
- Zunyi Tobacco Company of Guizhou Tobacco Corporation, Zunyi, China
| | - Duan Qianyuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Wu Xian
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Luo Yue
- Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Xu Yongbo
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Wu Xingwang
- School of Environments and Resource, Anqing Normal University, Anqing, China
| | - Xu Mengqian
- School of Environments and Resource, Anqing Normal University, Anqing, China
| |
Collapse
|
2
|
Hu S, Han P, Wang BT, Jin L, Ruan HH, Jin FJ. Transcriptome-wide analysis of a superior xylan degrading isolate Penicillium oxalicum 5-18 revealed active lignocellulosic degrading genes. Arch Microbiol 2024; 206:327. [PMID: 38922442 DOI: 10.1007/s00203-024-04063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability. However, the mechanisms of lignocellulosic degradation of this fungus on various substrates are still unclear. In this study, we performed transcriptome-wide profiling and comparative analysis of strain 5-18 cultivated in liquid media with glucose (Glu), xylan (Xyl) or wheat bran (WB) as sole carbon source. In comparison to Glu culture, the number of differentially expressed genes (DEGs) induced by WB and Xyl was 4134 and 1484, respectively, with 1176 and 868 genes upregulated. Identified DEGs were enriched in many of the same pathways in both comparison groups (WB vs. Glu and Xly vs. Glu). Specially, 118 and 82 CAZyme coding genes were highly upregulated in WB and Xyl cultures, respectively. Some specific pathways including (Hemi)cellulose metabolic processes were enriched in both comparison groups. The high upregulation of these genes also confirmed the ability of strain 5-18 to degrade lignocellulose. Co-expression and co-upregulated of genes encoding CE and AA CAZy families, as well as other (hemi)cellulase revealed a complex degradation strategy in this strain. Our findings provide new insights into critical genes, key pathways and enzyme arsenal involved in the biomass degradation of P. oxalicum 5-18.
Collapse
Affiliation(s)
- Shuang Hu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Pei Han
- Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Bao-Teng Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hong-Hua Ruan
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
3
|
Jahan I, Wang Y, Li P, Hussain S, Song J, Yan J. Comprehensive Analysis of Penicillium Sclerotiorum: Biology, Secondary Metabolites, and Bioactive Compound Potential─A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9555-9566. [PMID: 38648511 DOI: 10.1021/acs.jafc.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like β-xylosidases, β-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.
Collapse
Affiliation(s)
- Israt Jahan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yihan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ping Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Sarfaraz Hussain
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Jiayi Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jian Yan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| |
Collapse
|
4
|
Nguyen TTT, Kang KH, Kim DH, Kim SJ, Mun HY, Cheon W, Lee HB. Additions to the Knowledge of the Fungal Order Eurotiales in Korea: Eight Undescribed Species. MYCOBIOLOGY 2023; 51:417-435. [PMID: 38179116 PMCID: PMC10763837 DOI: 10.1080/12298093.2023.2290759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Eurotiales is a relatively large order of Ascomycetes, well-known for their ability to produce secondary metabolites with potential beneficial applications. To understand their diversity and distribution, different environmental sources including soil, freshwater, insect, and indoor air were investigated. Eight strains of Eurotiales were isolated and identified based on their morphological characters and a multi-gene phylogenetic analysis of the ITS, BenA, CaM, and RPB2 regions. We identified eight taxa that were previously not reported from Korea: Aspergillus baeticus, A. griseoaurantiacus, A. spinulosporus, Penicillium anthracinoglaciei, P. labradorum, P. nalgiovense, Talaromyces atroroseus, and T. georgiensis. Detailed descriptions, illustrations, and phylogenetic tree for the eight new records species are presented, and information regarding the records is also discussed.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Ki Hyun Kang
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Su Jin Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Hye Yeon Mun
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Wonsu Cheon
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Hyang Burm Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
5
|
Wang XC, Zhang ZK, Zhuang WY. Species Diversity of Penicillium in Southwest China with Discovery of Forty-Three New Species. J Fungi (Basel) 2023; 9:1150. [PMID: 38132751 PMCID: PMC10744262 DOI: 10.3390/jof9121150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillium species are ubiquitous in all kinds of environments, and they are of industrial, agricultural and clinical importance. In this study, soil fungal diversity in Southwestern China was investigated, and that of Penicillium turned out to be unexpectedly high. The survey included a total of 179 cultures of the genus isolated from 33 soil samples. Three-locus phylogenetic analyses and morphological comparisons were carried out. The examinations revealed that they belonged to two subgenera (Aspergilloides and Penicillium), 11 sections (Aspergilloides, Canescentia, Citrina, Exilicaulis, Fasciculata, Gracilenta, Lanata-Divaricata, Penicillium, Ramosum, Robsamsonia, and Sclerotiorum), 25 series, and 74 species. Forty-three species were discovered as new to science, and a new series, Simianshanica, was established in sect. Aspergilloides. Additionally, 11 species were recorded for the first time in China. Species isolation frequency and distribution of the group were also discussed.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhi-Kang Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
6
|
Hu S, Zhu R, Yu XY, Wang BT, Ruan HH, Jin FJ. A High-Quality Genome Sequence of the Penicillium oxalicum 5-18 Strain Isolated from a Poplar Plantation Provides Insights into Its Lignocellulose Degradation. Int J Mol Sci 2023; 24:12745. [PMID: 37628925 PMCID: PMC10454814 DOI: 10.3390/ijms241612745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Studies on the degradation of plant cell wall polysaccharides by fungal extracellular enzymes have attracted recent attention from researchers. Xylan, abundant in hemicellulose, that play great role in connection between cellulose and lignin, has seen interest in its hydrolytic enzymatic complex. In this study, dozens of fungus species spanning genera were isolated from rotting leaves based on their ability to decompose xylan. Among these isolates, a strain with strong xylanase-producing ability was selected for further investigation by genome sequencing. Based on phylogenetic analysis of ITS (rDNA internal transcribed spacer) and LSU (Large subunit 28S rDNA) regions, the isolate was identified as Penicillium oxalicum. Morphological analysis also supported this finding. Xylanase activity of this isolated P. oxalicum 5-18 strain was recorded to be 30.83 U/mL using the 3,5-dinitro-salicylic acid (DNS) method. Further genome sequencing reveals that sequenced reads were assembled into a 30.78 Mb genome containing 10,074 predicted protein-encoding genes. In total, 439 carbohydrate-active enzymes (CAZymes) encoding genes were predicted, many of which were associated with cellulose, hemicellulose, pectin, chitin and starch degradation. Further analysis and comparison showed that the isolate P. oxalicum 5-18 contains a diverse set of CAZyme genes involved in degradation of plant cell wall components, particularly cellulose and hemicellulose. These findings provide us with valuable genetic information about the plant biomass-degrading enzyme system of P. oxalicum, facilitating a further exploration of the repertoire of industrially relevant lignocellulolytic enzymes of P. oxalicum 5-18.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.H.); (R.Z.); (X.-Y.Y.); (B.-T.W.); (H.-H.R.)
| |
Collapse
|
7
|
Tu J, Zhao X, Yang Y, Yi Y, Wang H, Wei B, Zeng L. Two Bacillus spp. Strains Improve the Structure and Diversity of the Rhizosphere Soil Microbial Community of Lilium brownii var. viridulum. Microorganisms 2023; 11:1229. [PMID: 37317201 DOI: 10.3390/microorganisms11051229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
Lily Fusarium wilt disease caused by Fusarium spp. spreads rapidly and is highly destructive, leading to a severe reduction in yield. In this study, lily (Lilium brownii var. viridulum) bulbs were irrigated after planting with suspensions of two Bacillus strains that effectively control lily Fusarium wilt disease to assess their effects on the rhizosphere soil properties and microbial community. A high-throughput sequencing of microorganisms in the rhizosphere soil was performed and the soil physicochemical properties were measured. The FunGuild and Tax4Fun tools were used for a functional profile prediction. The results showed that Bacillus amyloliquefaciens BF1 and B. subtilis Y37 controlled lily Fusarium wilt disease with control efficacies of 58.74% and 68.93%, respectively, and effectively colonized the rhizosphere soil. BF1 and Y37 increased the bacterial diversity and richness of the rhizosphere soil and improved the physicochemical properties of the soil, thereby favoring the proliferation of beneficial microbes. The relative abundance of beneficial bacteria was increased and that of pathogenic bacteria was decreased. Bacillus abundance in the rhizosphere was positively correlated with most soil physicochemical properties, whereas Fusarium abundance was negatively correlated with most physicochemical properties. Functional prediction revealed that irrigation with BF1 and Y37 significantly upregulated glycolysis/gluconeogenesis among metabolism and absorption pathways. This study provides insights into the mechanism by which two Bacillus strains with antifungal activity, BF1 and Y37, antagonize plant pathogenic fungi and lays the foundation for their effective application as biocontrol agents.
Collapse
Affiliation(s)
- Jing Tu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Xin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yuanru Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yongjian Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Hongying Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Baoyang Wei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
8
|
García-Calvo L, Rodríguez-Castro R, Ullán RV, Albillos SM, Fernández-Aguado M, Vicente CM, Degnes KF, Sletta H, Barreiro C. Penicillium chrysogenum as a fungal factory for feruloyl esterases. Appl Microbiol Biotechnol 2023; 107:691-717. [PMID: 36595038 DOI: 10.1007/s00253-022-12335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.
Collapse
Affiliation(s)
- Laura García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Raquel Rodríguez-Castro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Ricardo V Ullán
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain.
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, S/N, Armunia, 24009, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica Y Biología Molecular, Departamento de Biotecnología Y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Marta Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Cláudia M Vicente
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Carlos Barreiro
- Área de Bioquímica Y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24007, León, Spain.
| |
Collapse
|
9
|
β-Xylosidase SRBX1 Activity from Sporisorium reilianum and Its Synergism with Xylanase SRXL1 in Xylose Release from Corn Hemicellulose. J Fungi (Basel) 2022; 8:jof8121295. [PMID: 36547628 PMCID: PMC9781407 DOI: 10.3390/jof8121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Sposisorium reilianum is the causal agent of corn ear smut disease. Eleven genes have been identified in its genome that code for enzymes that could constitute its hemicellulosic system, three of which have been associated with two Endo-β-1,4-xylanases and one with α-L-arabinofuranosidase activity. In this study, the native protein extracellular with β-xylosidase activity, called SRBX1, produced by this basidiomycete was analyzed by performing production kinetics and its subsequent purification by gel filtration. The enzyme was characterized biochemically and sequenced. Finally, its synergism with Xylanase SRXL1 was determined. Its activity was higher in a medium with corn hemicellulose and glucose as carbon sources. The purified protein was a monomer associated with the sr16700 gene, with a molecular weight of 117 kDa and optimal activity at 60 °C in a pH range of 4-7, which had the ability to hydrolyze the ρ-nitrophenyl β-D-xylanopyranoside and ρ-Nitrophenyl α-L-arabinofuranoside substrates. Its activity was strongly inhibited by silver ions and presented Km and Vmax values of 2.5 mM and 0.2 μmol/min/mg, respectively, using ρ-nitrophenyl β-D-xylanopyranoside as a substrate. The enzyme degrades corn hemicellulose and birch xylan in combination and in sequential synergism with the xylanase SRXL1.
Collapse
|
10
|
Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts 2022. [DOI: 10.3390/catal12070749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the present study, an extracellular alkali-thermo-tolerant xylanase from Bacillus paramycoides was produced in the presence of an organic solvent. The enzyme was purified by ammonium sulphate precipitation, gel filtration, and ion exchange chromatography, with an overall recovery of 25.9%. The purified enzyme hada 70 kDa molecular weight (MW) confirmed by SDS-PAGE gel analysis. The maximum enzyme activity was reported at 55 °C and pH 7.0. Xylanase activity and stability were improved in the presence of 30% (v/v) n-dodecane, iso-octane, n-decane, and cyclohexane (7 days). The enzyme activity was improved by Co2+, EDTA, and Triton-X-100 while vigorously repressed by Hg2+ and Cu2+. The purified enzyme showed 1.473 mg/mL Km and 654.017 µg/mL/min Vmax values. The distinctive assets of the isolate verified the potential application in the field of biomass conversion into fuel and other industrial processes. Organic solvent-tolerant xylanases can be used for concurrent saccharification and bioethanol production, the amplification of intoxicating beverages, and the fermenting industry.
Collapse
|
11
|
Wang H, Qi X, Gao S, Zhang Y, An Y. Biochemical characterization of an engineered bifunctional xylanase/feruloyl esterase and its synergistic effects with cellulase on lignocellulose hydrolysis. BIORESOURCE TECHNOLOGY 2022; 355:127244. [PMID: 35489578 DOI: 10.1016/j.biortech.2022.127244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Herein, the xylanase and feruloyl esterase domains of the xylanase/feruloyl esterase bifunctional enzyme (Xyn-Fae) from Prevotella ruminicola 23 were identified using N- and C-terminal truncation mutagenesis. In addition, a novel and more efficient xylanase/feruloyl esterase bifunctional enzyme XynII-Fae was constructed, and its synergistic action with a commercial cellulase for lignocellulose hydrolysis was studied. When 40% cellulase was replaced by XynII-Fae, the production of reducing sugars increased by 65% than that with the cellulase alone, and the conversions of xylan and glucan were increased by 125.1% and 54.3%, respectively. When 80% cellulase was substituted by XynII-Fae, up to 43.5 μg/mL ferulic acid and 418.7 μg/mL acetic acid were obtained. The XynII-Fae could also accelerate the hydrolysis of wheat straw and sugarcane bagasse with commercial cellulase. These results indicated that the synergistic action of XynII-Fae with cellulase could dramatically improve the hydrolysis efficiency of lignocellulose, showing the great potential for industrial applications.
Collapse
Affiliation(s)
- Hongling Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Song Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
12
|
Prieto A, de Eugenio L, Méndez-Líter JA, Nieto-Domínguez M, Murgiondo C, Barriuso J, Bejarano-Muñoz L, Martínez MJ. Fungal glycosyl hydrolases for sustainable plant biomass valorization: Talaromyces amestolkiae as a model fungus. Int Microbiol 2021; 24:545-558. [PMID: 34417929 DOI: 10.1007/s10123-021-00202-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
Abstract
As the main decomposers and recyclers in nature, fungi secrete complex mixtures of extracellular enzymes for degradation of plant biomass, which is essential for mobilization of the organic carbon fixed by the photosynthesis in vegetal cells. Biotechnology can emulate the closed natural biological cycles, using lignocellulosic biomass as a renewable resource and lignocellulolytic fungal enzymes as catalysts to sustainably produce consumer goods. Cellulose and hemicellulose are the major polysaccharides on Earth, and the main enzymes involved in their hydrolytic depolymerization are cellulases (endoglucanases, cellobiohydrolases, and β-glucosidases) and hemicellulases (mainly endoxylanases and β-xylosidases). This work will focus on the enzymes secreted by the filamentous ascomycete Talaromyces amestolkiae and on some of their biotechnological applications. Their excellent hydrolytic activity was demonstrated by the partial degradation of xylans to prebiotic oligosaccharides by the endoxylanase XynN, or by the saccharification of lignocellulosic wastes to monosaccharides (fermentable to ethanol) either by the whole secretomes or by isolated enzymes used as supplements of commercial cocktails. However, apart from their expected hydrolytic activity, some of the β-glycosidases produced by this strain catalyze the transfer of a sugar molecule to specific aglycons by transglycosylation. As the synthesis of customized glycoconjugates is a major goal for biocatalysis, mutant variants of the β-xyloxidase BxTW1 and the ß-glucosidases BGL-1 and BGL-2 were obtained by directed mutagenesis, substantially improving the regioselective production yields of bioactive glycosides since they showed reduced or null hydrolytic activity.
Collapse
Affiliation(s)
- Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain.
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Juan A Méndez-Líter
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Manuel Nieto-Domínguez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Carlos Murgiondo
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - Lara Bejarano-Muñoz
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), C/ Ramiro de Maeztu 9, 28022, Madrid, Spain.
| |
Collapse
|
13
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2021; 324:124623. [PMID: 33434871 DOI: 10.1016/j.biortech.2020.124623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
The term hemicellulose groups different polysaccharides with heterogeneous structures, mannans, xyloglucans, mixed-linkage β-glucans and xylans, which differ in their backbone and branches, and in the type and distribution of glycosidic linkages. The enzymatic degradation of these complex polymers requires the concerted action of multiple hemicellulases and auxiliary enzymes. Most commercial enzymes are produced by Trichoderma and Aspergillus species, but recent studies have disclosed Penicillium and Talaromyces as promising sources of hemicellulases. In this review, we summarize the current knowledge on the hemicellulolytic system of these genera, and the role of hemicellulases in the disruption and synthesis of glycosidic bonds. In both cases, the enzymes from Penicillium and Talaromyces represent an interesting alternative for valorization of lignocellulosic biomass in the current framework of circular economy.
Collapse
Affiliation(s)
- Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Nguyen TTT, Pangging M, Bangash NK, Lee HB. Five New Records of the Family Aspergillaceae in Korea, Aspergillus europaeus, A. pragensis, A. tennesseensis, Penicillium fluviserpens, and P. scabrosum. MYCOBIOLOGY 2020; 48:81-94. [PMID: 32363036 PMCID: PMC7178850 DOI: 10.1080/12298093.2020.1726563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 05/15/2023]
Abstract
During an investigation of the fungi from the Aspergillaceae family obtained from different environmental sources in Korea, we isolated six strains, including CNUFC WJC9-1, CNUFC BPM36-33, CNUFC MSW6, CNUFC ESW1, CNUFC TM6-2, and CNUFC WD17-1. The morphology and phylogeny of these isolates were analyzed based on their partial β-tubulin (BenA) and calmodulin (CaM) gene sequences. Based on the morphological characteristics and sequence analyses, the isolates CNUFC WJC9-1, CNUFC BPM36-33, CNUFC TM6-2, and CNUFC WD17-1 were identified as A. europaeus, A. pragensis, Penicillium fluviserpens, and P. scabrosum, respectively, and isolates CNUFC MSW6 and CNUFC ESW1 were identified as A. tennesseensis. To the best of our knowledge, the species A. europaeus, A. pragensis, A. tennesseensis, P. fluviserpens, and P. scabrosum have not been previously reported in Korea.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Monmi Pangging
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Naila Khan Bangash
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
15
|
Tavakol Noorabadi M, Babaeizad V, Zare R, Asgari B, Haidukowski M, Epifani F, Stea G, Moretti A, Logrieco AF, Susca A. Isolation, Molecular Identification, and Mycotoxin Production of Aspergillus Species Isolated from the Rhizosphere of Sugarcane in the South of Iran. Toxins (Basel) 2020; 12:E122. [PMID: 32075204 PMCID: PMC7076768 DOI: 10.3390/toxins12020122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
Knowledge of the genetic diversity detected among fungal species belonging to the genus Aspergillus is of key importance for explaining their important ecological role in the environment and agriculture. The current study aimed to identify Aspergillus species occurring in the rhizosphere of sugarcane in the South of Iran, and to investigate their mycotoxin profiles. One-hundred and twenty-five Aspergillus strains were isolated from the soil of eight major sugarcane-producing sites, and were molecularly identified using sequences of partial -tubulin (benA) and partial calmodulin (CaM) genes. Our molecular and phylogenetic results showed that around 70% of strains belonged to the Aspergillus section Nigri, and around 25% of species belonged to the Aspergillus section Terrei. Species belonging to both sections are able to produce different mycotoxins. The production of mycotoxins was measured for each species, according to their known mycotoxin profile: patulin (PAT) and sterigmatocystin (STG) for Aspergillusterreus; ochratoxin A (OTA) and fumonisins for Aspergilluswelwitschiae; and OTA alone for Aspergillustubingensis. The data showed that the production of OTA was detected in only 4 out of 10 strains of A.welwitschiae, while none of the A.tubingensis strains analyzed produced the mycotoxin. Fumonisins were produced by 8 out of 10 strains of A.welwitschiae. Finally, none of the 23 strains of A.terreus produced STG, while 13 of them produced PAT. The occurrence of such mycotoxigenic plant pathogens among the fungal community occurring in soil of sugarcane fields may represent a significant source of inoculum for the possible colonization of sugarcane plants, since the early stages of plant growth, due to the mycotoxin production capability, could have worrisome implications in terms of both the safety and loss of products at harvest.
Collapse
Affiliation(s)
- Maryam Tavakol Noorabadi
- Department of Plant Protection, Sari Agricultural Sciences and Natural Resources University, 48181 68984 Sari, Iran; (M.T.N.); (V.B.)
| | - Valiollah Babaeizad
- Department of Plant Protection, Sari Agricultural Sciences and Natural Resources University, 48181 68984 Sari, Iran; (M.T.N.); (V.B.)
| | - Rasoul Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), 19858 13111 Tehran, Iran; (R.Z.); (B.A.)
| | - Bita Asgari
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), 19858 13111 Tehran, Iran; (R.Z.); (B.A.)
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (M.H.); (F.E.); (G.T.); (A.F.L.)
| | - Filomena Epifani
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (M.H.); (F.E.); (G.T.); (A.F.L.)
| | - Gaetano Stea
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (M.H.); (F.E.); (G.T.); (A.F.L.)
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (M.H.); (F.E.); (G.T.); (A.F.L.)
| | - Antonio Francesco Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (M.H.); (F.E.); (G.T.); (A.F.L.)
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (M.H.); (F.E.); (G.T.); (A.F.L.)
| |
Collapse
|
16
|
β-Xylosidases: Structural Diversity, Catalytic Mechanism, and Inhibition by Monosaccharides. Int J Mol Sci 2019; 20:ijms20225524. [PMID: 31698702 PMCID: PMC6887791 DOI: 10.3390/ijms20225524] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Xylan, a prominent component of cellulosic biomass, has a high potential for degradation into reducing sugars, and subsequent conversion into bioethanol. This process requires a range of xylanolytic enzymes. Among them, β-xylosidases are crucial, because they hydrolyze more glycosidic bonds than any of the other xylanolytic enzymes. They also enhance the efficiency of the process by degrading xylooligosaccharides, which are potent inhibitors of other hemicellulose-/xylan-converting enzymes. On the other hand, the β-xylosidase itself is also inhibited by monosaccharides that may be generated in high concentrations during the saccharification process. Structurally, β-xylosidases are diverse enzymes with different substrate specificities and enzyme mechanisms. Here, we review the structural diversity and catalytic mechanisms of β-xylosidases, and discuss their inhibition by monosaccharides.
Collapse
|
17
|
Cintra LC, da Costa IC, de Oliveira ICM, Fernandes AG, Faria SP, Jesuíno RSA, Ravanal MC, Eyzaguirre J, Ramos LP, de Faria FP, Ulhoa CJ. The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzyme Microb Technol 2019; 133:109447. [PMID: 31874680 DOI: 10.1016/j.enzmictec.2019.109447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
To increase the efficiency of enzyme cocktails in deconstructing cellulose and hemicelluloses present in the plant cell wall, a combination of enzymes with complementary activities is required. Xylan is the main hemicellulose component of energy crops and for its complete hydrolysis a system consisting of several enzymes acting cooperatively, including endoxylanases (XYN), β-xylosidases (XYL) and α-l-arabinofuranosidases (ABF) is necessary. The current work aimed at evaluating the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of steam-exploded sugarcane bagasse (SEB). One recombinant endoxylanase (HXYN2) and one recombinant β-xylosidase (HXYLA) from Humicola grisea var thermoidea, together with an α-l-arabinofuranosidase (AFB3) from Penicillium pupurogenum, all produced in Pichia pastoris, were used to formulate an efficient enzyme mixture for SEB hydrolysis using a 23 Central Composite Rotatable Design (CCRD). The most potent enzyme for SEB hydrolysis was ABF3. Subsequently, the optimal enzyme mixture was used in combination with commercial cellulases (Accellerase 1500), either simultaneously or in sequential experiments. The supplementation of Accellerase 1500 with hemicellulases enhanced the glucose yield from SEB hydrolysis by 14.6%, but this effect could be raised to 50% when hemicellulases were added prior to hydrolysis with commercial cellulases. These results were supported by scanning electron microscopy, which revealed the effect of enzymatic hydrolysis on SEB fibers. Our results show the potential of complementary enzyme activities to improve enzymatic hydrolysis of SEB, thus improving the efficiency of the hydrolytic process.
Collapse
Affiliation(s)
- Lorena Cardoso Cintra
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; School of Veterinary and Animal Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Izadora Cristina Moreira de Oliveira
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Amanda Gregorim Fernandes
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Syd Pereira Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Maria Cristina Ravanal
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile; Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Eyzaguirre
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Fabrícia Paula de Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cirano José Ulhoa
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
18
|
Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0276-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an “Emerging Green Tool” along with its current status and future prospective.
Collapse
|
19
|
Nieto-Domínguez M, Martínez-Fernández JA, de Toro BF, Méndez-Líter JA, Cañada FJ, Prieto A, de Eugenio LI, Martínez MJ. Exploiting xylan as sugar donor for the synthesis of an antiproliferative xyloside using an enzyme cascade. Microb Cell Fact 2019; 18:174. [PMID: 31601204 PMCID: PMC6788083 DOI: 10.1186/s12934-019-1223-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. RESULTS In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) β-D-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the β-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. CONCLUSIONS Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) β-D-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - José Alberto Martínez-Fernández
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
20
|
Penicillium purpurogenum produces a novel, acidic, GH3 beta-xylosidase: Heterologous expression and characterization of the enzyme. Carbohydr Res 2019; 482:107738. [PMID: 31280019 DOI: 10.1016/j.carres.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/13/2023]
Abstract
Xylan, a component of plant cell walls, is composed of a backbone of β-1,4-linked xylopyranosyl units with a number of substituents. The complete degradation of xylan requires the action of several enzymes, among them β-xylosidase. The fungus Penicillium purpurogenum secretes a number of enzymes participating in the degradation of xylan. In this study, a β-xylosidase from this fungus was expressed in Pichia pastoris, and characterized. This enzyme (Xyl2) is a member of glycoside hydrolase family 3; it consists of a sequence of 792 residues including a signal peptide of 20 residues, with a theoretical molecular mass for the mature protein of 84.2 KDa and an isoelectric point of 5.07. The highest identity with a characterized fungal enzyme, is with a β-xylosidase from Aspergillus oryzae (70%). The optimal activity of Xyl2 is found at pH 2.0 and 28 °C. The enzyme is most stable at pH 2.0 and conserves 40% of activity at 42 °C (after 1h incubation). The kinetic parameters for p-nitrophenyl-β-d-xylopyranoside are: KM 0.53 mM, kcat 1*107 s-1 and kcat/KM 1.9*1010 M-1 s-1. The enzyme is about 10% active on p-nitrophenyl-α-l-arabinofuranoside. Xyl2 exhibits a high hydrolytic activity on xylooligosaccharides; it liberates xylose from beechwood and birchwood glucuronoxylan and it acts synergistically with endoxylanases in the degradation of xylan. Its low pH optimum make this enzyme particularly useful in potential applications requiring a low pH such as increasing the flavor of wine.
Collapse
|
21
|
Mardones W, Callegari E, Eyzaguirre J. Corncob and sugar beet pulp induce specific sets of lignocellulolytic enzymes in Penicillium purpurogenum. Mycology 2019; 10:118-125. [PMID: 31069125 PMCID: PMC6493289 DOI: 10.1080/21501203.2018.1517830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/26/2018] [Indexed: 01/19/2023] Open
Abstract
Penicillium purpurogenum is a filamentous fungus, which grows on a variety of natural carbon sources and secretes a large number of enzymes involved in cellulose, hemicelluloses and pectin biodegradation. The purpose of this work has been to identify potential lignocellulolytic enzymes and to compare the secreted enzymes produced when the fungus is grown on sugar beet pulp (rich in cellulose and pectin) and corn cob (rich in cellulose and xylan). Culture supernatants were subjected to two-dimensional nano-liquid chromatography/tandem mass spectrometry. Using MASCOT and a genome-derived protein database, the proteins present in the supernatant were identified. The putative function in the degradation of the polysaccharides was determined using dbCAN software. The results show that there is a good correlation between the polysaccharide composition of the carbon sources and the function of the secreted enzymes: both cultures are rich in cellulases, while sugar beet pulp induces pectinases and corncob, xylanases. The eventual biochemical characterisation of these enzymes will be of value for a better understanding of the biodegradation process performed by the fungus and increase the availability of enzymes for biotechnological methods associated with this process.
Collapse
Affiliation(s)
- Wladimir Mardones
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Callegari
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, SD, USA
| | - Jaime Eyzaguirre
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
22
|
Integration of biological pre-treatment methods for increased energy recovery from paper and pulp biosludge. J Microbiol Methods 2019; 160:93-100. [PMID: 30890400 DOI: 10.1016/j.mimet.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
The paper and pulp industry (PPI) produces high quantities of solid and liquid discharge and is regarded as the most polluting industry in the world causing adverse effects to environments and human beings. Hence changes in the way PPI sludge and waste materials are treated is urgently required. Nearly, 10 million tons of waste is generated per year, however PPI waste is enriched with many organic chemicalscontaining a high percentage of lignin, cellulose, and hemicellulose which can be used as valuable raw materials for the production of bioenergy and value-added chemicals. Pretreatment of complex lignocellulosic materials of PPI waste is difficult because of the cellulose crystallinity and lignin barrier. At present most of this waste is recycled in a conventional treatment approach through biological and chemical processes, incurring high cost and low returns. Henceefficient pretreatment techniques are required by which complete conversion of PPI waste is possible. Therefore, the present chapter provides the scope of integration of pretreatment methods through which bioenergy recovery is possible during the PPI waste treatment. Detailed information is presented on the various pre-treatment techniques (chemical, mechanical, enzymatic and biological) in order to increase the efficiency of PPI waste treatment and energy recovery from PPI waste. Along with acid and alkali based efficient chemical treatment process, physical methods (i.e. shearing, high-pressure homogenization, etc.), biochemical techniques (whole cell-based and enzyme-based) and finally biological techniques (e.g. aerobic and anaerobic treatment) are discussed. During each of the treatment processes, scope of energy recovery and bottlenecks of the processes were elaborated. The review thus provides systemic insight into developing efficient pretreatment processes which could increase carbon recovery and treatment efficiency of PPI waste.
Collapse
|
23
|
Production of xylanolytic enzymes by Moesziomyces spp. using xylose, xylan and brewery's spent grain as substrates. N Biotechnol 2018; 49:137-143. [PMID: 30423436 DOI: 10.1016/j.nbt.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
Xylanases play a crucial role in the hydrolysis of xylan-rich hemicelluloses and have wide industrial applications in the fuel, food, feed and pulp and paper industries. The production of these enzymes at low cost is of paramount importance for their commercial deployment. Moesziomyces antarcticus PYCC 5048T and M. aphidis PYCC 5535T were screened for their ability to produce xylanolytic enzymes when grown on d-xylose, xylan (beechwood) and brewery's spent grain (BSG). The extracellular crude extracts produced were characterized and tested in xylan hydrolysis. The yeasts produced xylanolytic enzymes without cellulolytic activity on all the substrates tested. The highest xylanase volumetric activity was obtained with M. aphidis PYCC 5535T grown on BSG, reaching 518.2 U/ml, a value 8.4- and 4.7-fold higher than those achieved on xylan and d-xylose, respectively. The xylanase activities were characterized in relation to pH and temperature with optima at 4.5 and 50 °C, respectively. The extracts from both M. antarcticus PYCC 5048Tand M. aphidis PYCC 5535T were used in xylan hydrolysis, producing d-xylose as the major end product (0.43 and 0.34-0.47 gD-xylose/gxylan, respectively, at 50 °C) and relatively low or no xylobiose accumulation (from no detection to 0.12 gD-xylobiose/gxylan at 50 °C).
Collapse
|
24
|
Espinoza K, Eyzaguirre J. Identification, heterologous expression and characterization of a novel glycoside hydrolase family 30 xylanase from the fungus Penicillium purpurogenum. Carbohydr Res 2018; 468:45-50. [PMID: 30138729 DOI: 10.1016/j.carres.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
Abstract
Penicillium purpurogenum grows on a variety of natural carbon sources and secretes to the medium a large number of enzymes that degrade the polysaccharides present in lignocellulose. In this work, the gene coding for a novel xylanase (XynC) belonging to family 30 of the glycoside hydrolases (GH), has been identified in the genome of the fungus. The enzyme has been expressed in Pichia pastoris and characterized. The mature XynC has 454 amino acid residues and a calculated molecular weight of 49 240. The purified protein shows a molecular weight of 67 000, and it is partially deglycosylated using EndoH. Its pH optimum is in the range of 3-5, and the optimal temperature is 45 °C. It is active on both arabinoxylan and glucuronoxylan, similarly to other fungal GH 30 xylanases. It liberates a set of oligosaccharides, which have been detected by thin-layer chromatography, thus indicating that it is an endo-acting xylanase. It hydrolyzes xylooligosaccharides, releasing mainly xylobiose, in contrast to other fungal GH family 30 enzymes which generate chiefly xylose. Highest sequence identity to a characterized family 30 xylanase is found with the enzyme from the fungus Bispora sp (53%). This is the first GH 30 xylanase described from a Penicillium.
Collapse
Affiliation(s)
- Karina Espinoza
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, República 217, Santiago, Chile
| | - Jaime Eyzaguirre
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, República 217, Santiago, Chile.
| |
Collapse
|
25
|
Distinct impacts of reductive soil disinfestation and chemical soil disinfestation on soil fungal communities and memberships. Appl Microbiol Biotechnol 2018; 102:7623-7634. [PMID: 29931599 DOI: 10.1007/s00253-018-9107-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/28/2018] [Accepted: 05/08/2018] [Indexed: 01/12/2023]
Abstract
Soil disinfestation is an important agricultural practice to conquer soil-borne diseases and thereby ensure crop productivity. Reductive soil disinfestation (RSD) had been developed as an environmentally friendly alternative to chemical soil disinfestation (CSD). However, the differences between CSD and RSD on soil-borne pathogen suppression and fungal community structure remain poorly understood. In this work, five treatments, i.e., untreated soil (CK), CSD with 0.5 t ha-1 dazomet (DZ), RSD with 10 t ha-1 ethanol (ET), 15 t ha-1 sugarcane bagasse (SB), and 15 t ha-1 bean dregs (BD), were performed to investigate their influences on disinfestation efficiency, fungal abundance, diversity, and community structure via quantitative PCR and high-throughput sequencing. RSD-related treatments, especially the BD treatment, effectively alleviated soil acidification and salinization. The fungal abundance and microbial activity considerably increased in the BD treatment and significantly declined in the DZ treatment as compared to the CK treatment. Moreover, both CSD and RSD-related treatments significantly inhibited the population of Fusarium oxysporum and the relative abundance of genus Fusarium. Fungal community structure was notably altered by CSD and RSD practices. Furthermore, both CSD and RSD harbored a distinct unique microbiome, with the DZ treatment dominated by the genus Mortierella and BD treatment predominated by the genera Zopfiella, Chaetomium, and Penicillium. Taken together, these results indicate that the BD treatment could considerably alleviate the soil deterioration, improve soil microbial activity, and reassemble a non-pathogen unique microbiome that have more disease-suppressive agents and thus might be a promising disinfestation practice to control soil-borne disease in monoculture system.
Collapse
|
26
|
Tsang CC, Tang JY, Lau SK, Woo PC. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era - Past, present and future. Comput Struct Biotechnol J 2018; 16:197-210. [PMID: 30002790 PMCID: PMC6039702 DOI: 10.1016/j.csbj.2018.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/12/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species important to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxonomic studies on these fungi are essential since they could provide invaluable information on their evolutionary relationships and define criteria for species recognition. With the advancement of various biological, biochemical and computational technologies, different approaches have been adopted for the taxonomy of Aspergillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different taxonomic approaches focus on different sets of characters of the organisms, various classification and identification schemes would result. In view of this, the consolidated species concept, which takes into account different types of characters, is recently accepted for taxonomic purposes and, together with the lately implemented 'One Fungus - One Name' policy, is expected to bring a more stable taxonomy for Aspergillus, Penicillium and Talaromyces, which could facilitate their evolutionary studies. The most significant taxonomic change for the three genera was the transfer of Penicillium subgenus Biverticillium to Talaromyces (e.g. the medically important thermally dimorphic 'P. marneffei' endemic in Southeast Asia is now named T. marneffei), leaving both Penicillium and Talaromyces as monophyletic genera. Several distantly related Aspergillus-like fungi were also segregated from Aspergillus, making this genus, containing members of both sexual and asexual morphs, monophyletic as well. In the current omics era, application of various state-of-the-art omics technologies is likely to provide comprehensive information on the evolution of Aspergillus, Penicillium and Talaromyces and a stable taxonomy will hopefully be achieved.
Collapse
Affiliation(s)
- Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - James Y.M. Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
27
|
Gil-Durán C, Ravanal MC, Ubilla P, Vaca I, Chávez R. Heterologous expression, purification and characterization of a highly thermolabile endoxylanase from the Antarctic fungus Cladosporium sp. Fungal Biol 2018; 122:875-882. [PMID: 30115321 DOI: 10.1016/j.funbio.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Numerous endoxylanases from mesophilic fungi have been purified and characterized. However, endoxylanases from cold-adapted fungi, especially those from Antarctica, have been less studied. In this work, a cDNA from the Antarctic fungus Cladosporium sp. with similarity to endoxylanases from glycosyl hydrolase family 10, was cloned and expressed in Pichia pastoris. The pure recombinant enzyme (named XynA) showed optimal activity on xylan at 50 °C and pH 6-7. The enzyme releases xylooligosaccharides but not xylose, indicating that XynA is a classical endoxylanase. The enzyme was most active on xylans with high content of arabinose (rye arabinoylan and wheat arabinoxylan) than on xylans with low content of arabinose (oat spelts xylan, birchwood xylan and beechwood xylan). Finally, XynA showed a very low thermostability. After 20-30 min of incubation at 40 °C, the enzyme was completely inactivated, suggesting that XynA would be the most thermolabile endoxylanase described so far in filamentous fungi. This is one of the few reports describing the heterologous expression and characterization of a xylanase from a fungus isolated from Antarctica.
Collapse
Affiliation(s)
- Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - María-Cristina Ravanal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 239, Santiago, Chile; Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia, Chile.
| | - Pamela Ubilla
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile.
| |
Collapse
|
28
|
Terrone CC, Freitas CD, Terrasan CRF, Almeida AFD, Carmona EC. Agroindustrial biomass for xylanase production by Penicillium chrysogenum : Purification, biochemical properties and hydrolysis of hemicelluloses. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
29
|
Ma R, Huang H, Bai Y, Luo H, Fan Y, Yao B. Insight into the cold adaptation and hemicellulose utilization of Cladosporium neopsychrotolerans from genome analysis and biochemical characterization. Sci Rep 2018; 8:6075. [PMID: 29666397 PMCID: PMC5904165 DOI: 10.1038/s41598-018-24443-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/20/2018] [Indexed: 11/30/2022] Open
Abstract
The occurrence of Cladosporium in cold ecosystems has been evidenced long before, and most of the knowledge about nutrient utilization of this genus is sporadic. An alpine soil isolate C. neopsychrotolerans SL-16, showing great cold tolerance and significant lignocellulose-degrading capability, was sequenced to form a 35.9 Mb genome that contains 13,456 predicted genes. Functional annotation on predicted genes revealed a wide array of proteins involved in the transport and metabolism of carbohydrate, protein and lipid. Large numbers of transmembrane proteins (967) and CAZymes (571) were identified, and those related to hemicellulose degradation was the most abundant. To undermine the hemicellulose (xyaln as the main component) utilization mechanism of SL-16, the mRNA levels of 23 xylanolytic enzymes were quantified, and representatives of three glycoside hydrolase families were functionally characterized. The enzymes showed similar neutral, cold active and thermolabile properties and synergistic action on xylan degradation (the synergy degree up to 15.32). Kinetic analysis and sequence and structure comparison with mesophilic and thermophilic homologues indicated that these cold-active enzymes employed different cold adaptation strategies to function well in cold environment. These similar and complementary advantages in cold adaptation and catalysis might explain the high efficiency of lignocellulose conversion observed in SL-16 under low temperatures.
Collapse
Affiliation(s)
- Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Biotechnology Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunliu Fan
- Biotechnology Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
30
|
García-Calvo L, Ullán RV, Fernández-Aguado M, García-Lino AM, Balaña-Fouce R, Barreiro C. Secreted protein extract analyses present the plant pathogen Alternaria alternata as a suitable industrial enzyme toolbox. J Proteomics 2018; 177:48-64. [PMID: 29438850 DOI: 10.1016/j.jprot.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023]
Abstract
Lignocellulosic plant biomass is the most abundant carbon source in the planet, which makes it a potential substrate for biorefinery. It consists of polysaccharides and other molecules with applications in pharmaceutical, food and feed, cosmetics, paper and textile industries. The exploitation of these resources requires the hydrolysis of the plant cell wall, which is a complex process. Aiming to discover novel fungal natural isolates with lignocellulolytic capacities, a screening for feruloyl esterase activity was performed in samples taken from different metal surfaces. An extracellular enzyme extract from the most promising candidate, the natural isolate Alternaria alternata PDA1, was analyzed. The feruloyl esterase activity of the enzyme extract was characterized, determining the pH and temperature optima (pH 5.0 and 55-60 °C, respectively), thermal stability and kinetic parameters, among others. Proteomic analyses derived from two-dimensional gels allowed the identification and classification of 97 protein spots from the extracellular proteome. Most of the identified proteins belonged to the carbohydrates metabolism group, particularly plant cell wall degradation. Enzymatic activities of the identified proteins (β-glucosidase, cellobiohydrolase, endoglucanase, β-xylosidase and xylanase) of the extract were also measured. These findings confirm A. alternata PDA1 as a promising lignocellulolytic enzyme producer. SIGNIFICANCE Although plant biomass is an abundant material that can be potentially utilized by several industries, the effective hydrolysis of the recalcitrant plant cell wall is not a straightforward process. As this hydrolysis occurs in nature relying almost solely on microbial enzymatic systems, it is reasonable to infer that further studies on lignocellulolytic enzymes will discover new sustainable industrial solutions. The results included in this paper provide a promising fungal candidate for biotechnological processes to obtain added value from plant byproducts and analogous substrates. Moreover, the proteomic analysis of the secretome of a natural isolate of Alternaria sp. grown in the presence of one of the most used vegetal substrates on the biofuels industry (sugar beet pulp) sheds light on the extracellular enzymatic machinery of this fungal plant pathogen, and can be potentially applied to developing new industrial enzymatic tools. This work is, to our knowledge, the first to analyze in depth the secreted enzyme extract of the plant pathogen Alternaria when grown on a lignocellulosic substrate, identifying its proteins by means of MALDI-TOF/TOF mass spectrometry and characterizing its feruloyl esterase, cellulase and xylanolytic activities.
Collapse
Affiliation(s)
- L García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain
| | - R V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, s/n, Armunia, 24009 León, Spain
| | - M Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain
| | - A M García-Lino
- Área de Fisiología, Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - R Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - C Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain; Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain.
| |
Collapse
|
31
|
Enzymatic purification and structure characterization of glucuronoxylan from water extract of Cassia obtusifolia seeds. Int J Biol Macromol 2018; 107:1438-1446. [DOI: 10.1016/j.ijbiomac.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
|
32
|
Mardones W, Di Genova A, Cortés MP, Travisany D, Maass A, Eyzaguirre J. The genome sequence of the soft-rot fungus Penicillium purpurogenum reveals a high gene dosage for lignocellulolytic enzymes. Mycology 2018; 9:59-69. [PMID: 30123662 PMCID: PMC6059080 DOI: 10.1080/21501203.2017.1419995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/18/2017] [Indexed: 01/18/2023] Open
Abstract
The high lignocellulolytic activity displayed by the soft-rot fungus Penicillium purpurogenum has made it a target for the study of novel lignocellulolytic enzymes. We have obtained a reference genome of 36.2 Mb of non-redundant sequence (11,057 protein-coding genes). The 49 largest scaffolds cover 90% of the assembly, and Core Eukaryotic Genes Mapping Approach (CEGMA) analysis reveals that our assembly captures almost all protein-coding genes. RNA-seq was performed and 93.1% of the reads aligned to the assembled genome. These data, plus the independent sequencing of a set of genes of lignocellulose-degrading enzymes, validate the quality of the genome sequence. P. purpurogenum shows a higher number of proteins with CAZy motifs, transcription factors and transporters as compared to other sequenced Penicillia. These results demonstrate the great potential for lignocellulolytic activity of this fungus and the possible use of its enzymes in related industrial applications.
Collapse
Affiliation(s)
- Wladimir Mardones
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Alex Di Genova
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Erable Team, INRIA Grenoble, Montbonno, France.,Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile
| | - María Paz Cortés
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile
| | - Dante Travisany
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile
| | - Alejandro Maass
- Center for Mathematical Modeling, University of Chile, Santiago, Chile.,Center for Genome Regulation, University of Chile, Santiago, Chile.,Department of Mathematical Engineering, University of Chile, Santiago, Chile
| | - Jaime Eyzaguirre
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
33
|
Uday USP, Majumdar R, Tiwari ON, Mishra U, Mondal A, Bandyopadhyay TK, Bhunia B. Isolation, screening and characterization of a novel extracellular xylanase from A spergillus niger (KP874102.1) and its application in orange peel hydrolysis. Int J Biol Macromol 2017; 105:401-409. [DOI: 10.1016/j.ijbiomac.2017.07.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
|
34
|
Cellulase-free-thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8: Over-production through statistical approach, purification and bio-deinking/ bio-bleaching potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential. J Proteomics 2017; 169:153-164. [DOI: 10.1016/j.jprot.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022]
|
36
|
Nieto-Domínguez M, de Eugenio LI, York-Durán MJ, Rodríguez-Colinas B, Plou FJ, Chenoll E, Pardo E, Codoñer F, Jesús Martínez M. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chem 2017; 232:105-113. [DOI: 10.1016/j.foodchem.2017.03.149] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/21/2022]
|
37
|
Promising cellulolytic fungi isolates for rice straw degradation. J Microbiol 2017; 55:711-719. [DOI: 10.1007/s12275-017-6282-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/12/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
38
|
Sheet S, Sathishkumar Y, Sivakumar AS, Shim KS, Lee YS. Low-shear-modeled microgravity-grown Penicillium chrysogenum-mediated biosynthesis of silver nanoparticles with enhanced antimicrobial activity and its anticancer effect in human liver cancer and fibroblast cells. Bioprocess Biosyst Eng 2017; 40:1529-1542. [PMID: 28710569 DOI: 10.1007/s00449-017-1809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
Gravitational force and shear forces induce various changes in gene expression and metabolite production of microorganisms. Previous reports have shown that there are differences in the expression of different sets of proteins and enzymes under microgravity conditions compared to normal gravity. The aim of this study is to utilize culture filtrates of Penicillium chrysogenum grown under microgravity and normal conditions to synthesize silver nanoparticles and to examine whether there is any difference between their physiochemical and biological function. Synthesized nanoparticles were characterized using UV-Vis spectroscopy, FTIR, XRD, and TEM. Biological functional studies such as antimicrobial activity, cytotoxic studies, and anticancer activity were carried out. Antimicrobial activity was tested using antibiotic susceptibility testing by Kirby-Bauer method and cytotoxicity tests were carried out using 3T3-L1 normal fibroblasts cells and Hep-G2 cancer cell lines. Interestingly, our results indicated that microgravity-synthesized silver nanoparticles possess enhanced antibacterial activity and cytotoxic effect against cancer cells compared to normal gravity-synthesized silver nanoparticle. This work highlighted the importance of gravitational vector on the fungal enzyme profiles and their role in silver nanoparticle synthesis with enhanced biological activity.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yesupatham Sathishkumar
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.,Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro, Daejeon, Republic of Korea
| | - Allur Subramaniyam Sivakumar
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yang Soo Lee
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
39
|
de Eugenio LI, Méndez-Líter JA, Nieto-Domínguez M, Alonso L, Gil-Muñoz J, Barriuso J, Prieto A, Martínez MJ. Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:161. [PMID: 28649280 PMCID: PMC5481877 DOI: 10.1186/s13068-017-0844-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/08/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Genomic and proteomic analysis are potent tools for metabolic characterization of microorganisms. Although cellulose usually triggers cellulase production in cellulolytic fungi, the secretion of the different enzymes involved in polymer conversion is subjected to different factors, depending on growth conditions. These enzymes are key factors in biomass exploitation for second generation bioethanol production. Although highly effective commercial cocktails are available, they are usually deficient for β-glucosidase activity, and genera like Penicillium and Talaromyces are being explored for its production. RESULTS This article presents the description of Talaromyces amestolkiae as a cellulase-producer fungus that secretes high levels of β-glucosidase. β-1,4-endoglucanase, exoglucanase, and β-glucosidase activities were quantified in the presence of different carbon sources. Although the two first activities were only induced with cellulosic substrates, β-glucosidase levels were similar in all carbon sources tested. Sequencing and analysis of the genome of this fungus revealed multiple genes encoding β-glucosidases. Extracellular proteome analysis showed different induction patterns. In all conditions assayed, glycosyl hydrolases were the most abundant proteins in the supernatants, albeit the ratio of the diverse enzymes from this family depended on the carbon source. At least two different β-glucosidases have been identified in this work: one is induced by cellulose and the other one is carbon source-independent. The crudes induced by Avicel and glucose were independently used as supplements for saccharification of slurry from acid-catalyzed steam-exploded wheat straw, obtaining the highest yields of fermentable glucose using crudes induced by cellulose. CONCLUSIONS The genome of T. amestolkiae contains several genes encoding β-glucosidases and the fungus secretes high levels of this activity, regardless of the carbon source availability, although its production is repressed by glucose. Two main different β-glucosidases have been identified from proteomic shotgun analysis. One of them is produced under different carbon sources, while the other is induced in cellulosic substrates and is a good supplement to Celluclast in saccharification of pretreated wheat straw.
Collapse
Affiliation(s)
- Laura I. de Eugenio
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan A. Méndez-Líter
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Nieto-Domínguez
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lola Alonso
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Genetic and Molecular Epidemiology Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, CNIO, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jesús Gil-Muñoz
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Barriuso
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
40
|
Oleas G, Callegari E, Sepúlveda R, Eyzaguirre J. Heterologous expression, purification and characterization of three novel esterases secreted by the lignocellulolytic fungus Penicillium purpurogenum when grown on sugar beet pulp. Carbohydr Res 2017; 443-444:42-48. [PMID: 28342968 PMCID: PMC5560272 DOI: 10.1016/j.carres.2017.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 11/24/2022]
Abstract
The lignocellulolytic fungus, Penicillium purpurogenum, grows on a variety of natural carbon sources, among them sugar beet pulp. Culture supernatants of P. purpurogenum grown on sugar beet pulp were partially purified and the fractions obtained analyzed for esterase activity by zymograms. The bands with activity on methyl umbelliferyl acetate were subjected to mass spectrometry to identify peptides. The peptides obtained were probed against the proteins deduced from the genome sequence of P. purpurogenum. Eight putative esterases thus identified were chosen for future work. Their cDNAs were expressed in Pichia pastoris. The supernatants of the recombinant clones were assayed for esterase activity, and five of the proteins were active against one or more substrates: methyl umbelliferyl acetate, indoxyl acetate, methyl esterified pectin and fluorescein diacetate. Three of those enzymes were purified, further characterized and subjected to a BLAST search. Based on their amino acid sequence and properties, they were identified as follows: RAE1, pectin acetyl esterase (CAZy family CE 12); FAEA, feruloyl esterase (could not be assigned to a CAZy family) and EAN, acetyl esterase (former CAZy family CE 10).
Collapse
Affiliation(s)
- Gabriela Oleas
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Eduardo Callegari
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, SD, USA.
| | - Romina Sepúlveda
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Jaime Eyzaguirre
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
41
|
Chang X, Xu B, Bai Y, Luo H, Ma R, Shi P, Yao B. Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris. PLoS One 2017; 12:e0171111. [PMID: 28187141 PMCID: PMC5302446 DOI: 10.1371/journal.pone.0171111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/15/2017] [Indexed: 11/18/2022] Open
Abstract
N-Glycosylation is a posttranslational modification commonly occurred in fungi and plays roles in a variety of enzyme functions. In this study, a xylanase (Af-XYNA) of glycoside hydrolase (GH) family 10 from Aspergillus fumigatus harboring three potential N-glycosylation sites (N87, N124 and N335) was heterologously produced in Pichia pastoris. The N-glycosylated Af-XYNA (WT) exhibited favorable temperature and pH optima (75°C and pH 5.0) and good thermostability (maintaining stable at 60°C). To reveal the role of N-glycosylation on Af-XYNA, the enzyme was deglycosylated by endo-β-N-acetylglucosaminidase H (DE) or modified by site-directed mutagenesis at N124 (N124T). The deglycosylated DE and mutant N124T showed narrower pH adaptation range, lower specific activity, and worse pH and thermal stability. Further thermodynamic analysis revealed that the enzyme with higher N-glycosylation degree was more thermostable. This study demonstrated that the effects of glycosylation at different degrees and sites were diverse, in which the glycan linked to N124 played a key role in pH and thermal stability of Af-XYNA.
Collapse
Affiliation(s)
- Xiaoyu Chang
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Bo Xu
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- * E-mail: (BX); (PS)
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- * E-mail: (BX); (PS)
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
43
|
Mäkelä MR, Mansouri S, Wiebenga A, Rytioja J, de Vries RP, Hildén KS. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification. N Biotechnol 2016; 33:834-841. [DOI: 10.1016/j.nbt.2016.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
44
|
Mhetras N, Liddell S, Gokhale D. Purification and characterization of an extracellular β-xylosidase from Pseudozyma hubeiensis NCIM 3574 (PhXyl), an unexplored yeast. AMB Express 2016; 6:73. [PMID: 27637943 PMCID: PMC5023640 DOI: 10.1186/s13568-016-0243-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022] Open
Abstract
This paper reports on the production of β-xylosidase from an unexplored yeast, Pseudozyma hubeinsis. The expression of this enzyme could be induced by beech wood xylan when the yeast was grown at 27 °C. The enzyme was purified to homogeneity as a glycoprotein with 23 % glycosylation. The purification protocol involved ammonium sulphate precipitation, QAE-Sephadex A50 ion exchange chromatography and sephacryl-200 column chromatography which resulted in 8.3-fold purification with 53.12 % final recovery. The purified enzyme showed prominent single band on SDS-PAGE. It is a monomeric protein of 110 kDa molecular weight confirmed by SDS-PAGE followed by MALDI-TOF mass spectrometry (112.3 kDa). The enzyme was optimally active at 60 °C and pH 4.5 and stable at pH range (4–9) and at 50 °C for 4 h. Chemical modification studies revealed that active site of the purified enzyme comprised of carboxyl, tyrosine and tryptophan residues. The carboxyl residue is involved in catalysis and tryptophan residue is solely involved in substrate binding. The best match from the search of the NCBInr database was with gi|808364558 glycoside hydrolase of Pseudozyma hubeiensis SY62 with 26 % sequence coverage confirming that it is a glycoside hydrolase/beta-glucosidase. From the search of customized SWISSPROT database, it was revealed that SWISSPROT does not contain any entries that are similar to the purified enzyme.
Collapse
|
45
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
46
|
Xylanase and β-xylosidase from Penicillium janczewskii : Purification, characterization and hydrolysis of substrates. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Li F, Wang H, Xin H, Cai J, Fu Q, Jin Y. Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes. Food Chem 2016; 212:155-61. [PMID: 27374519 DOI: 10.1016/j.foodchem.2016.05.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
Purified standards of xylooligosaccharides (XOSs) (DP2-6) were first prepared from a mixture of XOSs using solid phase extraction (SPE), followed by semi-preparative liquid chromatography both under hydrophilic interaction liquid chromatography (HILIC) modes. Then, an accurate quantitative analysis method based on hydrophilic interaction liquid chromatography-evaporative light scattering detection (HILIC-ELSD) was developed and validated for simultaneous determination of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6). This developed HILIC-ELSD method was applied to the comparison of different hydrolysis methods for xylans and assessment of XOSs contents from different agricultural wastes. The result indicated that enzymatic hydrolysis was preferable with fewer by-products and high XOSs yield. The XOSs yield (48.40%) from sugarcane bagasse xylan was the highest, showing conversions of 11.21g X2, 12.75g X3, 4.54g X4, 13.31g X5, and 6.78g X6 from 100g xylan.
Collapse
Affiliation(s)
- Fangbing Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Huaxia Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianfeng Cai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
48
|
Daly P, van Munster JM, Kokolski M, Sang F, Blythe MJ, Malla S, Velasco de Castro Oliveira J, Goldman GH, Archer DB. Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression. Fungal Genet Biol 2016; 102:4-21. [PMID: 27150814 PMCID: PMC5476202 DOI: 10.1016/j.fgb.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022]
Abstract
First genome-wide transcriptional response in fungal mixed species straw cultures. In mixed cultures, rRNA abundance was used to predict RNA-seq read abundance. Subset of P. chrysogenum CAZy with mixed cultures increased abundance pattern. Lack of overall higher CAZy transcripts/activities due to inter-species antagonism. Induction of secondary metabolite producing gene clusters in mixed cultures.
Gaining new knowledge through fungal monoculture responses to lignocellulose is a widely used approach that can lead to better cocktails for lignocellulose saccharification (the enzymatic release of sugars which are subsequently used to make biofuels). However, responses in lignocellulose mixed cultures are rarely studied in the same detail even though in nature fungi often degrade lignocellulose as mixed communities. Using a dual RNA-seq approach, we describe the first study of the transcriptional responses of wild-type strains of Aspergillus niger, Trichoderma reesei and Penicillium chrysogenum in two and three mixed species shake-flask cultures with wheat straw. Based on quantification of species-specific rRNA, a set of conditions was identified where mixed cultures could be sampled so as to obtain sufficient RNA-seq reads for analysis from each species. The number of differentially-expressed genes varied from a couple of thousand to fewer than one hundred. The proportion of carbohydrate active enzyme (CAZy) encoding transcripts was lower in the majority of the mixed cultures compared to the respective straw monocultures. A small subset of P. chrysogenum CAZy genes showed five to ten-fold significantly increased transcript abundance in a two-species mixed culture with T. reesei. However, a substantial number of T. reesei CAZy transcripts showed reduced abundance in mixed cultures. The highly induced genes in mixed cultures indicated that fungal antagonism was a major part of the mixed cultures. In line with this, secondary metabolite producing gene clusters showed increased transcript abundance in mixed cultures and also mixed cultures with T. reesei led to a decrease in the mycelial biomass of A. niger. Significantly higher monomeric sugar release from straw was only measured using a minority of the mixed culture filtrates and there was no overall improvement. This study demonstrates fungal interaction with changes in transcripts, enzyme activities and biomass in the mixed cultures and whilst there were minor beneficial effects for CAZy transcripts and activities, the competitive interaction between T. reesei and the other fungi was the most prominent feature of this study.
Collapse
Affiliation(s)
- Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Jolanda M van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Matthew Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Fei Sang
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Martin J Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Campinas, São Paulo 13083-100, Brazil.
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, São Paulo 14040-903, Brazil.
| | - David B Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
49
|
Oladoye CO, Connerton IF, Kayode RMO, Omojasola PF, Kayode IB. Biomolecular characterization, identification, enzyme activities of molds and physiological changes in sweet potatoes (Ipomea batatas) stored under controlled atmospheric conditions. J Zhejiang Univ Sci B 2016. [DOI: 10.1631/jzus.b1400328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
dos Santos JA, Vieira JMF, Videira A, Meirelles LA, Rodrigues A, Taniwaki MH, Sette LD. Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production. AMB Express 2016; 6:25. [PMID: 27009074 PMCID: PMC4805677 DOI: 10.1186/s13568-016-0194-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Abstract
Marine-derived fungi have been reported as relevant producers of enzymes, which can have different properties in comparison with their terrestrial counterparts. The aim of the present study was to select from a collection of 493 marine-derived fungi the best producer of xylanase in order to evaluate the enzymatic production under different conditions. A total of 112 isolates produced xylanase in solid medium containing xylan as the carbon source, with 31 of them able to produce at least 10 U/mL of the enzyme. The best production (49.41 U/mL) was achieved by the strain LAMAI 31, identified as Aspergillus cf. tubingensis. After confirming the lack of pathogenicity (absence of ochratoxin A and fumonisin B2 production) this fungus was submitted to the experimental design in order to evaluate the effect of different variables on the enzymatic production, with the aim of optimizing culture conditions. Three experimental designs (two Plackett–Burman and one factorial fractional) were applied. The best condition for the enzymatic production was defined, resulting in an increase of 12.7 times in comparison with the initial production during the screening experiments. In the validation assay, the peak of xylanase production (561.59 U/mL) was obtained after 96 h of incubation, being the best specific activity achieved after 72 h of incubation. Xylanase from A. cf. tubingensis LAMAI 31 had optimum pH and temperature at 5.0 and 55 °C, respectively, and was shown to be stable at a range of 40–50 °C, and in pH from 3.6 to 7.0. Results from the present work indicate that A. cf. tubingensis LAMAI 31 can be considered as a new genetic resource for xylanase production.
Collapse
|