1
|
Guha TK, Calos MP. Nucleofection of phiC31 Integrase Protein Mediates Sequence-Specific Genomic Integration in Human Cells. J Mol Biol 2020; 432:3950-3955. [PMID: 32339531 DOI: 10.1016/j.jmb.2020.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
The phage-derived phiC31 integrase is a useful tool for mediating sequence-specific genomic integration in mammalian cells, recombining donor plasmids bearing the attB recognition site with introduced genomic attP sites or endogeneous pseudo-attP sites having partial identity to attP. In most prior studies, phiC31 integrase has been introduced as plasmid DNA or mRNA. The current report examines whether phiC31 integrase functions efficiently in mammalian cells when co-nucleofected as a purified protein, along with attB-containing donor plasmids or PCR fragments. We describe preparation of phiC31 integrase protein and evidence that it can mediate genomic integration in human 293 cells, including PCR evidence for integration at an endogenous pseudo-attP site. This work demonstrates for the first time the ability of 605- and 613-amino-acid versions of phiC31 integrase protein to mediate efficient, site-specific integration into the genome of human cells when co-nucleofected with full-sizedattB-containing donor plasmids or linear 2.5-kb PCR fragments. This protein-mediated approach may be especially useful for integration of exogenous sequences into valuable therapeutic target cells, such as hematopoietic stem cells or T cells, that are sensitive to introduced DNA.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Genetics, Stanford University School of Medicine, Stanford, 94305-5120 CA, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, 94305-5120 CA, USA.
| |
Collapse
|
2
|
Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells. Sci Rep 2014; 4:4240. [PMID: 24577484 PMCID: PMC3937794 DOI: 10.1038/srep04240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.
Collapse
|
3
|
González-Prieto C, Agúndez L, Linden RM, Llosa M. HUH site-specific recombinases for targeted modification of the human genome. Trends Biotechnol 2013; 31:305-12. [PMID: 23545167 DOI: 10.1016/j.tibtech.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
Abstract
Site-specific recombinases (SSRs) have been crucial in the development of mammalian transgenesis. For gene therapy purposes, this approach remains challenging, because, for example, SSR delivery is largely unresolved and SSR DNA substrates must pre-exist in target cells. In this review, we discuss the potential of His-hydrophobic-His (HUH) recombinases to overcome some of the limitations of conventional SSRs. Members of the HUH protein family cleave single-stranded (ss)DNA, but can mediate site-specific integration with the aid of the host replication machinery. Adeno-associated virus (AAV) Rep remains the only known example to support site-specific integration in human cells, and AAV is an excellent gene delivery vector that can be targeted to specific cells and organelles. Bacterial protein TrwC catalyzes integration into human sequences and can be delivered to human cells covalently linked to DNA, offering attractive new features for targeted genome modification.
Collapse
Affiliation(s)
- Coral González-Prieto
- Departamento de Biología Molecular (Universidad de Cantabria) and IBBTEC (UC, CSIC, SODERCAN), Santander, Spain
| | | | | | | |
Collapse
|
4
|
Ma QW. [Progress of φC31 integrase system in site-specific integration]. YI CHUAN = HEREDITAS 2011; 33:567-75. [PMID: 21684861 DOI: 10.3724/sp.j.1005.2011.00567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Integrase of phage fC31 catalyses the homologous recombination between Streptomyces attachment site attB and the phage attachment site attP. Meanwhile, this integrase can mediate integration of attB-containing donor plasmids into the pseudo attP sites in eukaryotic genomes by a site-specific manner and resulting long-term and robust expression of integrated genes. Nowadays, fC31 integrase system is becoming a potential tool for genome modification, gene therapy and transgenic research. Recent progress of fC31 integrase system in integration mode in mammalian genomes, efficiency improvement and researches concerned on transgenic safety were summarized in this review.
Collapse
Affiliation(s)
- Qing-Wen Ma
- Children's Hospital of Shanghai, Institute of Medical Genetics, Shanghai JiaoTong University, Shanghai 200040, China.
| |
Collapse
|
5
|
Maury JJP, Choo ABH, Chan KKK. Technical advances to genetically engineering human embryonic stem cells. Integr Biol (Camb) 2011; 3:717-23. [DOI: 10.1039/c1ib00019e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Julien Jean Pierre Maury
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668. Fax: (65) 64789561; Tel: (65) 64070898
| | - Andre Boon-Hwa Choo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668. Fax: (65) 64789561; Tel: (65) 64070898
| | - Ken Kwok-Keung Chan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668. Fax: (65) 64789561; Tel: (65) 64070898
| |
Collapse
|
6
|
Lee JE, Lim HJ. LDP12, a novel cell-permeable peptide derived from L1 capsid protein of the human papillomavirus. Mol Biol Rep 2011; 39:1079-86. [DOI: 10.1007/s11033-011-0834-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/05/2011] [Indexed: 11/30/2022]
|
7
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
8
|
Feng Y, McDunn JE, Teitelbaum DH. Decreased phospho-Akt signaling in a mouse model of total parenteral nutrition: a potential mechanism for the development of intestinal mucosal atrophy. Am J Physiol Gastrointest Liver Physiol 2010; 298:G833-41. [PMID: 20299605 PMCID: PMC3774331 DOI: 10.1152/ajpgi.00030.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Total parenteral nutrition (TPN) leads to a decline in phosphatidylinositol 3-kinase (PI3K)/phospho-Akt (p-Akt) activity, affecting downstream signaling, reducing epithelial cell (EC) proliferation, and contributing to intestinal mucosal atrophy. We hypothesized that promoting Akt activity would prevent these changes. We used a novel Akt-activating peptide, TCL1 (a head-to-tail dimer of the Akt-binding domain of T-cell lymphoma-1), or an inactive mutant sequence TCL1G conjugated to a transactivator of transcription peptide sequence to promote intracellular uptake. Four groups of mice were studied, enteral nutrition group (control), control mice given a functioning TCL1 (control + TCL1), TPN mice given TCL1G (control peptide, TPN + TCL1G); and TPN mice given TCL1. TPN mice given TCL1G showed a significant decrease in jejunal EC p-Akt (Ser473 and Thr308) abundance, whereas TPN + TCL1 mice showed increased p-Akt (Ser473) abundance. Phosphorylation of beta-catenin and glycogen synthase kinase-3beta (downstream targets of Akt signaling) were also decreased in the TPN + TCL1G group and completely prevented in the TPN + TCL1 group. Use of TCL1 nearly completely prevented the decline in EC proliferation seen in the TPN + TCL1G group, as well as partly returned EC apoptosis levels close to controls. The mammalian target of rapamycin pathway demonstrated a similar reduction in activity in the TPN + TCL1G group that was significantly prevented in the TPN + TCL1 group. These results support a significant loss of PI3K/p-Akt signaling upon replacing enteral nutrition with TPN, and prevention of this loss demonstrates the key importance of PI3K/p-Akt signaling in maintaining gut integrity including EC proliferation and reduction in apoptosis.
Collapse
Affiliation(s)
- Yongjia Feng
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan;
| | - Jonathan E. McDunn
- 2Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel H. Teitelbaum
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan;
| |
Collapse
|