1
|
Anwar S, Naseem S, Ali Z. Biochemical analysis, photosynthetic gene (psbA) down–regulation, and in silico receptor prediction in weeds in response to exogenous application of phenolic acids and their analogs. PLoS One 2023; 18:e0277146. [PMID: 36952510 PMCID: PMC10035924 DOI: 10.1371/journal.pone.0277146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 03/25/2023] Open
Abstract
Chemical herbicides are the primary weed management tool, although several incidences of herbicide resistance have emerged, causing serious threat to agricultural sustainability. Plant derived phenolic acids with herbicidal potential provide organic and eco-friendly substitute to such harmful chemicals. In present study, phytotoxicity of two phenolic compounds, ferulic acid (FA) and gallic acid (GA), was evaluated in vitro and in vivo against three prevalent herbicide-resistant weed species (Sinapis arvensis, Lolium multiflorum and Parthenium hysterophorus). FA and GA not only suppressed the weed germination (80 to 60% respectively), but also negatively affected biochemical and photosynthetic pathway of weeds. In addition to significantly lowering the total protein and chlorophyll contents of the targeted weed species, the application of FA and GA treatments increased levels of antioxidant enzymes and lipid peroxidation. Photosynthetic gene (psbA) expression was downregulated (10 to 30 folds) post 48 h of phenolic application. In silico analysis for receptor identification of FA and GA in psbA protein (D1) showed histidine (his-198) and threonine (thr-286) as novel receptors of FA and GA. These two receptors differ from the D1 amino acid receptors which have previously been identified (serine-264 and histidine-215) in response to PSII inhibitor herbicides. Based on its toxicity responses, structural analogs of FA were also designed. Four out of twelve analogs (0.25 mM) significantly inhibited weed germination (30 to 40%) while enhancing their oxidative stress. These results are unique which provide fundamental evidence of phytotoxicity of FA and GA and their analogs to develop cutting-edge plant based bio-herbicides formulation in future.
Collapse
Affiliation(s)
- Sobia Anwar
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Laboratory, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Laboratory, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Laboratory, COMSATS University Islamabad (CUI), Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
2
|
Xu X, Li M, Zou JX, Zheng YS, Li DD. EgMYB108 regulates very long-chain fatty acid (VLCFA) anabolism in the mesocarp of oil palm. PLANT CELL REPORTS 2022; 41:1449-1460. [PMID: 35362736 DOI: 10.1007/s00299-022-02868-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
EgMYB108 regulates VLCFA anabolism in oil palm. Very long-chain fatty acids (VLCFAs), which are fatty acids with more than 18 C, can not only be used as a form of triglyceride (TAG) but also provide precursors for the biosynthesis of cuticle wax, and they exist in plant epidermal cells in the form of wax in higher plants. However, which and how transcriptional factors (TFs) regulate this process is largely unknown in oil palm. In this study, a MYB transcription factor (EgMYB108) with high expression in the mesocarp of oil palm fruit was characterized. Overexpression of EgMYB108 promoted not only total lipid content but also VLCFA accumulation in oil palm embryoids. Subsequently, transient transformation in protoplasts and qRT-PCR analysis indicated that the EgKCS5 and EgLACS4 genes were significantly increased with the overexpression of EgMYB108. Furthermore, yeast one‑hybrid assays, dual-luciferase assays and EMSAs demonstrated that EgMYB108 binds to the promoters of EgKCS5 and EgLACS4 and regulates their transcription. Finally, EgMYB108 interacts with the promoters of EgLACS and EgKCS simultaneously and finally improves the VLCFA and total lipid contents; a pathway summarizing this interaction was depicted.. The results provide new insight into the mechanism by which EgMYB108 regulates lipid and VLCFA accumulation in oil palm.
Collapse
Affiliation(s)
- Xin Xu
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
| | - Menghan Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
| | - Ji-Xin Zou
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
- Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China
| | - Yu-Sheng Zheng
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China
| | - Dong-Dong Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya, 572025, Hainan, China.
| |
Collapse
|
3
|
Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 2022; 14:e00194. [PMID: 35242556 PMCID: PMC8881666 DOI: 10.1016/j.mec.2022.e00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.
Collapse
Affiliation(s)
- Soledad Mora-Vásquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | | | - Claudia Espinosa-Leal
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | - Guy A. Cardineau
- Arizona State University, Beus Center for Law and Society, Mail Code 9520, 111 E. Taylor Street, Phoenix, AZ, 85004-4467, USA
| | - Silverio García-Lara
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
4
|
Anwar S, Naseem S, Karimi S, Asi MR, Akrem A, Ali Z. Bioherbicidal Activity and Metabolic Profiling of Potent Allelopathic Plant Fractions Against Major Weeds of Wheat-Way Forward to Lower the Risk of Synthetic Herbicides. FRONTIERS IN PLANT SCIENCE 2021; 12:632390. [PMID: 34567017 PMCID: PMC8461335 DOI: 10.3389/fpls.2021.632390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 05/14/2023]
Abstract
The productivity of major field crops is highly compromised due to weed infestation. Inefficient weed management practices and undue and excessive use of chemical herbicides have drastically contaminated the environment and human health, in addition to resistance development in weed species. Therefore, utilization of allelopathic plants to explore phytochemicals as potent organic alternatives to such chemical herbicides has become indispensable. The current study evaluates the comparative bio-herbicidal potential of methanolic extracts of castor (Ricinus communis), artemisia (Artemisia santolinifolia), wheat (Triticum aestivum), and sorghum (Sorghum bicolor) to suppress growth of major weeds, i.e., wild mustard (Sinapis arvensis), Italian ryegrass (Lolium multiflorum), and carrot grass (Parthenium hysterophorus). The results demonstrated a concentration-dependent effect on weeds' growth. Overall, in vitro seed germination was reduced from 60 to 100% in response to 5% (w/v) extract concentration. Significant reduction in radicle length, hypocotyl length, and fresh biomass of the weeds was also observed. A strong inhibitory effect was seen in in vivo pot experiments, revealing that application of 10-20% methanolic extracts induced permanent wilting and substantial reduction in the chlorophyll content of weeds along with 20-80% increase in oxidative stress. Artemisia showed the most significant allelopathic effect, on account of highest phenolic and flavonoid contents, followed by castor, wheat, and sorghum, against S. arvensis, L. multiflorum, and P. hysterophorus, respectively. Phytochemical analysis, through high-performance liquid chromatography (HPLC), also exhibited a correlation between extract's phytotoxicity and their antioxidant potential due to their major constituents (rutin, quercetin, catechin, gallic acid, vanillic acid, syringic acid, ferulic acid, p-hydroxy benzoic acid, p-coumaric acid, and sinapic acid), among the total of 13 identified in methanolic fractions. Comprehensive profiling of allelochemicals with liquid chromatography-mass spectrometry (LC-MS) determined 120, 113, 90, and 50 derivates of phenolic acids, flavonoids, and alkaloids, reported for the first time through this study, demonstrating significant allelopathic potential of the targeted plant fractions, which can be explored further to develop a sustainable bio-herbicidal formulation.
Collapse
Affiliation(s)
- Sobia Anwar
- Plant Biotechnology and Molecular Pharming Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Saadia Naseem
- Plant Biotechnology and Molecular Pharming Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Saira Karimi
- Plant Biotechnology and Molecular Pharming Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Ahmed Akrem
- Department of Botany, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zahid Ali
- Plant Biotechnology and Molecular Pharming Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
5
|
Goldenkova-Pavlova IV, Pavlenko OS, Mustafaev ON, Deyneko IV, Kabardaeva KV, Tyurin AA. Computational and Experimental Tools to Monitor the Changes in Translation Efficiency of Plant mRNA on a Genome-Wide Scale: Advantages, Limitations, and Solutions. Int J Mol Sci 2018; 20:E33. [PMID: 30577638 PMCID: PMC6337405 DOI: 10.3390/ijms20010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
The control of translation in the course of gene expression regulation plays a crucial role in plants' cellular events and, particularly, in responses to environmental factors. The paradox of the great variance between levels of mRNAs and their protein products in eukaryotic cells, including plants, requires thorough investigation of the regulatory mechanisms of translation. A wide and amazingly complex network of mechanisms decoding the plant genome into proteome challenges researchers to design new methods for genome-wide analysis of translational control, develop computational algorithms detecting regulatory mRNA contexts, and to establish rules underlying differential translation. The aims of this review are to (i) describe the experimental approaches for investigation of differential translation in plants on a genome-wide scale; (ii) summarize the current data on computational algorithms for detection of specific structure⁻function features and key determinants in plant mRNAs and their correlation with translation efficiency; (iii) highlight the methods for experimental verification of existed and theoretically predicted features within plant mRNAs important for their differential translation; and finally (iv) to discuss the perspectives of discovering the specific structural features of plant mRNA that mediate differential translation control by the combination of computational and experimental approaches.
Collapse
Affiliation(s)
- Irina V Goldenkova-Pavlova
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Olga S Pavlenko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Orkhan N Mustafaev
- Department of Biophysics and Molecular Biology, Baku State University, Zahid Khalilov Str. 23, Baku AZ 1148, Azerbaijan.
| | - Igor V Deyneko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Ksenya V Kabardaeva
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Alexander A Tyurin
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| |
Collapse
|
6
|
Liu TY, Chou WC, Chen WY, Chu CY, Dai CY, Wu PY. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:426-438. [PMID: 29451720 DOI: 10.1111/tpj.13874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta.
Collapse
Affiliation(s)
- Tzu-Yin Liu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Chun Chou
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Yuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Yi Chu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chen-Yi Dai
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Yu Wu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
7
|
Abdul Mutalib NE, Mat Isa N, Alitheen NB, Song AAL, Rahim RA. IRES-incorporated lactococcal bicistronic vector for target gene expression in a eukaryotic system. Plasmid 2014; 73:26-33. [PMID: 24780699 DOI: 10.1016/j.plasmid.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
Abstract
Plasmid DNAs isolated from lactic acid bacteria (LAB) such as Lactococcus lactis (L. lactis) has been gaining more interests for its positive prospects in genetic engineering-related applications. In this study, the lactococcal plasmid, pNZ8048 was modified so as to be able to express multiple genes in the eukaryotic system. Therefore, a cassette containing an internal ribosome entry site (IRES) was cloned between VP2 gene of a very virulent infectious bursal disease (vvIBDV) UPM 04190 of Malaysian local isolates and the reporter gene, green fluorescent protein (GFP) into pNZ:CA, a newly constructed derivative of pNZ8048 harboring the cytomegalovirus promoter (Pcmv) and polyadenylation signal. The new bicistronic vector, denoted as pNZ:vig was subjected to in vitro transcription/translation system followed by SDS-PAGE and Western blot analysis to rapidly verify its functionality. Immunoblotting profiles showed the presence of 49 and 29kDa bands that corresponds to the sizes of the VP2 and GFP proteins respectively. This preliminary result shows that the newly constructed lactococcal bicistronic vector can co-express multiple genes in a eukaryotic system via the IRES element thus suggesting its feasibility to be used for transfection of in vitro cell cultures and vaccine delivery.
Collapse
Affiliation(s)
- Nur Elina Abdul Mutalib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Adelene Ai-Lian Song
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
8
|
Impacts of pr-10a overexpression at the molecular and the phenotypic level. Int J Mol Sci 2013; 14:15141-66. [PMID: 23880863 PMCID: PMC3742292 DOI: 10.3390/ijms140715141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/19/2013] [Accepted: 05/23/2013] [Indexed: 12/04/2022] Open
Abstract
Biotechnological approaches using genetic modifications such as homologous gene overexpression can be used to decode gene functions under well-defined circumstances. However, only the recording of the resulting phenotypes allows inferences about the impact of the modification on the organisms’ evolutionary, ecological or economic performance. We here compare a potato wild-type cell line with two genetically engineered cell cultures homologously overexpressing Pathogenesis Related Protein 10a (pr-10a). A detailed analysis of the relative gene-expression patterns of pr-10a and its regulators sebf and pti4 over time provides insights into the molecular response of heterotrophic cells to distinct osmotic and salt-stress conditions. Furthermore, this system serves as an exemplar for the tracing of respiration kinetics as a faster and more sensitive alternative to the laborious and time-consuming recording of growth curves. The utility and characteristics of the resulting data type and the requirements for its appropriate analysis are figured out. It is demonstrated how this novel type of phenotypic information together with the gene-expression-data provides valuable insights into the effect of genetic modifications on the behaviour of cells on both the molecular and the macroscopic level.
Collapse
|
9
|
Multimodal protein constructs for herbivore insect control. Toxins (Basel) 2012; 4:455-75. [PMID: 22822457 PMCID: PMC3398420 DOI: 10.3390/toxins4060455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 01/09/2023] Open
Abstract
Transgenic plants expressing combinations of microbial or plant pesticidal proteins represent a promising tool for the efficient, durable control of herbivorous insects. In this review we describe current strategies devised for the heterologous co-expression of pesticidal proteins in planta, some of which have already shown usefulness in plant protection. Emphasis is placed on protein engineering strategies involving the insertion of single DNA constructs within the host plant genome. Multimodal fusion proteins integrating complementary pesticidal functions along a unique polypeptide are first considered, taking into account the structural constraints associated with protein or protein domain grafting to biologically active proteins. Strategies that allow for the co- or post-translational release of two or more pesticidal proteins are then considered, including polyprotein precursors releasing free proteins upon proteolytic cleavage, and multicistronic transcripts for the parallel translation of single protein-encoding mRNA sequences.
Collapse
|
10
|
Rosales-Mendoza S, Rubio-Infante N, Govea-Alonso DO, Moreno-Fierros L. Current status and perspectives of plant-based candidate vaccines against the human immunodeficiency virus (HIV). PLANT CELL REPORTS 2012; 31:495-511. [PMID: 22159962 DOI: 10.1007/s00299-011-1194-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/03/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Genetically engineered plants are economical platforms for the large-scale production of recombinant proteins and have been used over the last 21 years as models for oral vaccines against a wide variety of human infectious and autoimmune diseases with promising results. The main inherent advantages of this approach consist in the absence of purification needs and easy production and administration. One relevant infectious agent is the human immunodeficiency virus (HIV), since AIDS evolved as an alarming public health problem implicating very high costs for government agencies in most African and developing countries. The design of an effective and inexpensive vaccine able to limit viral spread and neutralizing the viral entry is urgently needed. Due to the limited efficacy of the vaccines assessed in clinical trials, new HIV vaccines able to generate broad immune profiles are a priority in the field. This review discusses the current advances on the topic of using plants as alternative expression systems to produce functional vaccine components against HIV, including antigens from Env, Gag and early proteins such as Tat and Nef. Ongoing projects of our group based on the expression of chimeric proteins comprising C4 and V3 domains from gp120, as an approach to elicit broadly neutralizing antibodies are mentioned. The perspectives of the revised approaches, such as the great need of assessing the oral immunogenicity and a detailed immunological characterization of the elicited immune responses, are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico.
| | | | | | | |
Collapse
|