1
|
Yin W, Li Y, Xu W, Bao Y, Zhu J, Su X, Han J, Chen C, Lin H, Sun F. Unveiling long-term combined effect of salinity and Lead(II) on anammox activity and microbial community dynamics in saline wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 402:130767. [PMID: 38692373 DOI: 10.1016/j.biortech.2024.130767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.
Collapse
Affiliation(s)
- Wenjun Yin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yibin Bao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Zhu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Quach V, Mahaffey M, Chavez N, Kasuga T, Fan Z. Dilute gluconic acid pretreatment and fermentation of wheat straw to ethanol. Bioprocess Biosyst Eng 2024; 47:623-632. [PMID: 38568263 DOI: 10.1007/s00449-024-02973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/20/2024] [Indexed: 05/15/2024]
Abstract
Gluconic acid's potential as a wheat straw pretreatment agent was studied at different concentrations (0.125-1 M) and temperatures (160-190 °C) for 30 min, followed by enzymatic hydrolysis. 0.125 M gluconic acid, 170 °C, yielded the highest xylose output, while 0.5 M gluconic acid at 190 °C yielded the best glucose yield. A fraction of gluconic acid decomposed during pretreatment. Detoxified hemicellulose hydrolysate from 0.125 M gluconate at 170 °C for 60 min showed promise for ethanol production. The gluconate contained in the detoxified hemicellulose hydrolysate can be fermented to ethanol along with other hemicellulose sugars present by Escherichia coli SL100. The ethanol yield from gluconate and sugars was about 90.4 ± 1.8%. The pretreated solids can be effectively converted to ethanol by Saccharomyces cerevisiae D5A via simultaneous saccharification and fermentation with the cellulase and β-glucosidase addition. The ethanol yield achieved was 92.8 ± 2.0% of the theoretical maximum. The cellulose conversion was about 70.8 ± 0.8%.
Collapse
Affiliation(s)
- Vu Quach
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Matthew Mahaffey
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nicolas Chavez
- Department of Chemical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Takao Kasuga
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- United States Department of Agriculture-Agricultural Research Service, Davis, CA, 95616, USA
| | - Zhiliang Fan
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Ni Q, Chen Y, Lu L, Liu M. C4-HSL-mediated quorum sensing regulates nitrogen removal in activated sludge process at Low temperatures. ENVIRONMENTAL RESEARCH 2024; 244:117928. [PMID: 38128597 DOI: 10.1016/j.envres.2023.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The activated sludge process faces challenges in achieving adequate nitrification ability under low-temperature conditions. Therefore, we investigated the effects of different concentrations of exogenous N-butyryl-homoserine lactone (C4-HSL) on nitrogen removal in lab-scale sequencing batch reactors (SBRs) at 10 °C. The results revealed that both 10 and 100 μg/L of C4-HSL could improve NH4+-N removal efficiency by 26% and reduce the effluent TN concentration to below 15 mg/L. Analysis of extracellular polymeric substances (EPS) revealed that adding C4-HSL (especially 100 μg/L) reduced the protein-like substance content while increasing the humic and fulvic acid-like substance content in EPS. Protein-like substances could serve as carbon sources for denitrifiers, thus promoting denitrification. Moreover, exogenous C4-HSL increased the abundance of bacteria and genes associated with nitrification and denitrification. Further analysis of quorum sensing (QS) of microorganisms indicated that exogenous C4-HSL (especially 100 μg/L) promoted regulation, transportation, and decomposition functions in the QS process. Furthermore, CS, sdh, fum, and mdh gene expressions involved in the tricarboxylic acid (TCA) cycle were enhanced by 100 μg/L C4-HSL. Exogenous C4-HSL promoted microbial communication, microbial energy metabolism, and nitrogen metabolism, thereby improving the nitrogen removal efficiency of activated sludge systems at low temperatures. This study provides a feasible strategy for enhancing denitrogenation performance at low temperatures through exogenous C4-HSL.
Collapse
Affiliation(s)
- Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lanxin Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Wang S, Zhang M, Chen X, Bi Y, Meng F, Wang C, Liu L, Wang S. Effect of biochar on the SPNA system at ambient temperatures. CHEMOSPHERE 2024; 352:141465. [PMID: 38364918 DOI: 10.1016/j.chemosphere.2024.141465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Biochar has been extensively studied in wastewater treatment systems. However, the role of biochar in the single-stage partial nitritation anammox (SPNA) system remains not fully understood. This study explored the impact of biochar on the SPNA at ambient temperatures (20 °C and 15 °C). The nitrogen removal rate of the system raised from 0.43 to 0.50 g N/(L·d) as the biochar addition was raised from 2 to 4 g/L. Metagenomic analysis revealed that gene abundances of amino sugar metabolism and nucleotide sugar metabolism, amino acid metabolism, and quorum sensing were decreased after the addition of biochar. However, the gene abundance of enzymes synthesizing NADH and trehalose increased, indicating that biochar could stimulate electron transfer reactions in microbial metabolism and assist microorganisms in maintaining a steady state at lower temperatures. The findings of this study provide valuable insights into the mechanism behind the improved nitrogen removal facilitated by biochar in the single-stage partial nitritation anammox system.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Menghan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Xiaoying Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - LingJie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Siyu Wang
- China Urban Construction Design & Research Institute Co., LTD, China
| |
Collapse
|
5
|
Wang H, Gong H, Dai X, Yang M. Metagenomics reveals the microbial community and functional metabolism variation in the partial nitritation-anammox process: From collapse to recovery. J Environ Sci (China) 2024; 135:210-221. [PMID: 37778796 DOI: 10.1016/j.jes.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 10/03/2023]
Abstract
Mainstream partial nitritation-anammox (PNA) process easily suffers from performance instability and even reactor collapse in application. Thus, it is of great significance to unveil the characteristic of performance recovery, understand the intrinsic mechanism and then propose operational strategy. In this study, we combined long-term reactor operation, batch tests, and metagenomics to reveal the succession of microbial community and functional metabolism variation from system collapse to recovery. Proper aeration control (0.10-0.25 mg O2/L) was critical for performance recovery. It was also found that Candidatus Brocadia became the dominant flora and its abundance increased from 3.5% to 11.0%. Significant enhancements in carbon metabolism and phospholipid biosynthesis were observed during system recovery, and the genes abundance related to signal transduction was dramatically increased. The up-regulation of sdh and suc genes showed the processes of succinate dehydrogenation and succinyl-CoA synthesis might stimulate the production of amino acids and the synthesis of proteins, thereby possibly improving the activity and abundance of AnAOB, which was conducive to the performance recovery. Moreover, the increase in abundance of hzs and hdh genes suggested the enhancement of the anammox process. Changes in the abundance of key genes involved in nitrogen metabolism indicated that nitrogen removal pathway was more diverse after system recovery. The achievement of performance recovery was driven by anammox, nitrification and denitrification coupled with dissimilatory nitrate reduction to ammonium. These results provide deeper insights into the recovery mechanism of PNA system and also provide a potential regulation strategy for the stable operation of the mainstream PNA process.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Gong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Min Yang
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
6
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
7
|
Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. BIORESOURCE TECHNOLOGY 2022; 352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.
Collapse
Affiliation(s)
- Chunjie Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Liping Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Donglai Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dongsheng Xue
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
8
|
Liu L, Xu S, Wang F, Yan Z, Tian Z, Ji M. Effect of exogenous N-acyl-homoserine lactones on the anammox process at 15 ℃: Nitrogen removal performance, gene expression and metagenomics analysis. BIORESOURCE TECHNOLOGY 2021; 341:125760. [PMID: 34454237 DOI: 10.1016/j.biortech.2021.125760] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, C6-HSL and C8-HSL were separately introduced into anammox biofilm reactors to facilitate the anammox performance at 15 ℃. After operation 138 d, total nitrogen removal efficiencies in reactors with amendment C6-HSL or C8-HSL at 15 ℃ reached 76.2% and 74.6%, respectively. Content of extracellular polymeric substances increased by 19.8%, 67.7% and 121.2% in control group, C6-HSL and C8-HSL addition group, respectively. Genes associated with nitrogen removal (i.e., hzo, hzsB, nirS, and ccsB) showed higher expression level at amendment C6-HSL or C8-HSL group. Metagenomics analysis found that amendment of C6-HSL or C8-HL resulted in an increased abundance of genes related to the tricarboxylic acid cycle, amino sugar and nucleotide sugar metabolism, and also genes associated with amino acid biosynthesis pathways. Overall, amendment C6-HSL or C8-HSL had been confirmed as the effective method to improve the performance of anammox bioreactor at 15 ℃.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Sihan Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Zhao Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhongke Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Abstract
Background Enzymatic and chemical reactions are key for understanding biological processes in cells. Curated databases of chemical reactions exist but these databases struggle to keep up with the exponential growth of the biomedical literature. Conventional text mining pipelines provide tools to automatically extract entities and relationships from the scientific literature, and partially replace expert curation, but such machine learning frameworks often require a large amount of labeled training data and thus lack scalability for both larger document corpora and new relationship types. Results We developed an application of Snorkel, a weakly supervised learning framework, for extracting chemical reaction relationships from biomedical literature abstracts. For this work, we defined a chemical reaction relationship as the transformation of chemical A to chemical B. We built and evaluated our system on small annotated sets of chemical reaction relationships from two corpora: curated bacteria-related abstracts from the MetaCyc database (MetaCyc_Corpus) and a more general set of abstracts annotated with MeSH (Medical Subject Headings) term Bacteria (Bacteria_Corpus; a superset of MetaCyc_Corpus). For the MetaCyc_Corpus, we obtained 84% precision and 41% recall (55% F1 score). Extending to the more general Bacteria_Corpus decreased precision to 62% with only a four-point drop in recall to 37% (46% F1 score). Overall, the Bacteria_Corpus contained two orders of magnitude more candidate chemical reaction relationships (nine million candidates vs 68,0000 candidates) and had a larger class imbalance (2.5% positives vs 5% positives) as compared to the MetaCyc_Corpus. In total, we extracted 6871 chemical reaction relationships from nine million candidates in the Bacteria_Corpus. Conclusions With this work, we built a database of chemical reaction relationships from almost 900,000 scientific abstracts without a large training set of labeled annotations. Further, we showed the generalizability of our initial application built on MetaCyc documents enriched with chemical reactions to a general set of articles related to bacteria.
Collapse
|
10
|
Tao W, Kasuga T, Li S, Huang H, Fan Z. Homoethanol production from cellobionate and glycerol using recombinant Klebsiella oxytoca strains. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Homoethanol Production from Glycerol and Gluconate Using Recombinant Klebsiella oxytoca Strains. Appl Environ Microbiol 2019; 85:AEM.02122-18. [PMID: 30578264 DOI: 10.1128/aem.02122-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
Abstract
Gluconic acid, an oxidized cellulose degradation product, could be produced from cellulosic biomass. Glycerol is an inexpensive and renewable resource for fuels and chemicals production and is available as a byproduct of biodiesel production. Gluconate is a more oxidized substrate than glucose, whereas glycerol is a more reduced substrate than glucose. Although the production of homoethanol from glucose can be achieved, the conversion of gluconate to ethanol is accompanied by the production of oxidized byproduct such as acetate, and reduced byproducts such as 1,3-propanediol are produced, along with ethanol, when glycerol is used as the carbon source. When gluconate and glycerol are used as the sole carbon source by Klebsiella oxytoca BW21, the ethanol yield is about 62 to 64%. Coutilization of both gluconate and glycerol in batch fermentation increased the yield of ethanol to about 78.7% and decreased by-product accumulation (such as acetate and 1,3-propanediol) substantially. Decreasing by-product formation by deleting the pta, frd, ldh, pflA, and pduC genes in strain BW21 increased the ethanol yield to 89.3% in the batch fermentation of a glycerol-gluconate mixture. These deletions produced the strain K. oxytoca WT26. However, the utilization rate of glycerol was significantly slower than that of gluconate in batch fermentation. In addition, substantial amounts of glycerol remain unutilized after gluconate was depleted in batch fermentation. Continuous fed-batch fermentation was used to solve the utilization rate mismatch problem for gluconate and glycerol. An ethanol yield of 97.2% was achieved in continuous fed-batch fermentation of these two substrates, and glycerol was completely used at the end of the fermentation.IMPORTANCE Gluconate is a biomass-derived degradation product, and glycerol can be obtained as a biodiesel byproduct. Compared to glucose, using them as the sole substrate is accompanied by the production of by-products. Our study shows that through pathway engineering and adoption of a fed-batch culture system, high-yield homoethanol production that usually can be achieved by using glucose as the substrate is achievable using gluconate and glycerol as cosubstrates. The same strategy is expected to be able to achieve homofermentative production of other products, such as lactate and 2,3-butanediol, which can be typically achieved using glucose as the substrate and inexpensive biodiesel-derived glycerol and biomass-derived gluconate as the cosubstrates.
Collapse
|
12
|
Lin H, Hildebrand A, Kasuga T, Fan Z. Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition. Enzyme Microb Technol 2017; 99:25-31. [DOI: 10.1016/j.enzmictec.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
|
13
|
Hildebrand A, Bennett Addison J, Kasuga T, Fan Z. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Abstract
E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States; BEACON Center for the Study of Evolution in Action, East Lansing, United States
| |
Collapse
|
15
|
Khan NE, Myers JA, Tuerk AL, Curtis WR. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. BIORESOURCE TECHNOLOGY 2014; 172:201-211. [PMID: 25262429 DOI: 10.1016/j.biortech.2014.08.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus® bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2¢/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility.
Collapse
Affiliation(s)
- Nymul E Khan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - John A Myers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Amalie L Tuerk
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
16
|
Khattak WA, Ullah MW, Ul-Islam M, Khan S, Kim M, Kim Y, Park JK. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective. Appl Microbiol Biotechnol 2014; 98:9561-78. [PMID: 25359472 DOI: 10.1007/s00253-014-6154-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Most biomanufacturing systems developed for the production of biocommodities are based on whole-cell systems. However, with the advent of innovative technologies, the focus has shifted from whole-cell towards cell-free enzyme system. Since more than a century, researchers are using the cell-free extract containing the required enzymes and their respective cofactors in order to study the fundamental aspects of biological systems, particularly fermentation. Although yeast cell-free enzyme system is known since long ago, it is rarely been studied and characterized in detail. In this review, we hope to describe the major pitfalls encountered by whole-cell system and introduce possible solutions to them using cell-free enzyme systems. We have discussed the glycolytic and fermentative pathways and their regulation at both transcription and translational levels. Moreover, several strategies employed for development of cell-free enzyme system have been described with their potential merits and shortcomings associated with these developmental approaches. We also described in detail the various developmental approaches of synthetic cell-free enzyme system such as compartmentalization, metabolic channeling, protein fusion, and co-immobilization strategies. Additionally, we portrayed the novel cell-free enzyme technologies based on encapsulation and immobilization techniques and their development and commercialization. Through this review, we have presented the basics of cell-free enzyme system, the strategies involved in development and operation, and the advantages over conventional processes. Finally, we have addressed some potential directions for the future development and industrialization of cell-free enzyme system.
Collapse
Affiliation(s)
- Waleed Ahmad Khattak
- Department of Chemical Engineering, Kyungpook National University, Daegu, 7020-701, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Banka AL, Guralp SA, Gulari E. Secretory expression and characterization of two hemicellulases, xylanase, and β-xylosidase, isolated from Bacillus subtilis M015. Appl Biochem Biotechnol 2014; 174:2702-10. [PMID: 25224913 PMCID: PMC4237932 DOI: 10.1007/s12010-014-1219-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/02/2014] [Indexed: 11/23/2022]
Abstract
Microbial hydrolysis of lignocellulosic biomass is becoming increasingly important for the production of renewable biofuels to address global energy concerns. Hemicellulose is the second most abundant lignocellulosic biopolymer consisting of mostly xylan and other polysaccharides. A variety of enzymes is involved in complete hydrolysis of xylan into its constituent sugars for subsequent biofuel fermentation. Two enzymes, endo-β-xylanase and β-xylosidase, are particularly important in hydrolyzing the xylan backbone into xylooligosaccharides and individual xylose units. In this study, we describe the cloning, expression, and characterization of xylanase and β-xylosidase isolated from Bacillus subtilis M015 in Escherichia coli. The genes were identified to encode a 213 amino acid protein for xylanase (glycoside hydrolase (GH) family 11) and a 533 amino acid protein for β-xylosidase (GH family 43). Recombinant enzymes were produced by periplasmic-leaky E. coli JE5505 and therefore secreted into the supernatant during growth. Temperature and pH optima were determined to be 50 °C and 5.5–6 for xylanase and 35 °C and 7.0–7.5 for β-xylosidase using beech wood xylan and p-nitrophenyl-β-D-xylopyranoside as the substrates, respectively. We have also investigated the synergy of two enzymes on xylan hydrolysis and observed 90 % increase in total sugar release (composed of xylose, xylobiose, xylotriose, and xylotetraose) for xylanase/β-xylosidase combination as opposed to xylanase alone.
Collapse
Affiliation(s)
- Alison L Banka
- Department of Chemical Engineering, University of Michigan, 3074 H.H.Dow Buil., 2300 Hayward St, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
18
|
Zhu P, Dong S, Li S, Xu X, Xu H. Improvement of welan gum biosynthesis and transcriptional analysis of the genes responding to enhanced oxygen transfer by oxygen vectors in Sphingomonas sp. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Förster AH, Gescher J. Metabolic Engineering of Escherichia coli for Production of Mixed-Acid Fermentation End Products. Front Bioeng Biotechnol 2014; 2:16. [PMID: 25152889 PMCID: PMC4126452 DOI: 10.3389/fbioe.2014.00016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/09/2014] [Indexed: 01/25/2023] Open
Abstract
Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of E. coli toward cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate, and succinate are presented.
Collapse
Affiliation(s)
- Andreas H Förster
- Institute of Applied Biosciences, Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Johannes Gescher
- Institute of Applied Biosciences, Karlsruhe Institute of Technology , Karlsruhe , Germany
| |
Collapse
|
20
|
Liu H, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Chung WJ. L-arabonate and D-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2014; 159:455-459. [PMID: 24713235 DOI: 10.1016/j.biortech.2014.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
The production of L-arabonate and D-galactonate employing a versatile l-arabinose dehydrogenase (AraDH) from Azospirillum brasilense is presented. The promiscuity of AraDH is manifested by its appreciable activity towards L-arabinose and D-galactose as substrates, and NAD(+) and NADP(+) as cofactors. The AraDH was introduced into an engineered Escherichia coli with inactive L-arabinose or D-galactose metabolism, resulting in strains EMA2 and EWG4, respectively. EMA2 produced 43.9 g L(-1)L-arabonate with a productivity of 1.22 g L(-1)h(-1) and 99.1% (mol/mol) yield. After methanol precipitation, 92.6% of L-arabonate potassium salt was recovered with a purity of 88.8%. Meanwhile, EWG4 produced 24.0 g L(-1)D-galactonate, which is 36% higher than that of the strain carrying the specific d-galactose dehydrogenase. Overall results reveal that the versatility of AraDH to efficiently catalyze the formation of L-arabonate and D-galactonate could be a useful tool in advancing industrial viability for sugar acids production.
Collapse
Affiliation(s)
- Huaiwei Liu
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy and Biotechnology (DEB), Myongji University, Yongin-si, Gyeonggi-do 449-728, Republic of Korea
| | - Kris Niño G Valdehuesa
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy and Biotechnology (DEB), Myongji University, Yongin-si, Gyeonggi-do 449-728, Republic of Korea
| | - Kristine Rose M Ramos
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy and Biotechnology (DEB), Myongji University, Yongin-si, Gyeonggi-do 449-728, Republic of Korea
| | - Grace M Nisola
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy and Biotechnology (DEB), Myongji University, Yongin-si, Gyeonggi-do 449-728, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin-si, Gyeonggi-do 449-728, Republic of Korea
| | - Wook-Jin Chung
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy and Biotechnology (DEB), Myongji University, Yongin-si, Gyeonggi-do 449-728, Republic of Korea.
| |
Collapse
|