1
|
Jiang J, Liu D, Li J, Tian C, Zhuang Y, Xia J. 13 C-MFA helps to identify metabolic bottlenecks for improving malic acid production in Myceliophthora thermophila. Microb Cell Fact 2024; 23:295. [PMID: 39488710 PMCID: PMC11531171 DOI: 10.1186/s12934-024-02570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Myceliophthora thermophila has been engineered as a significant cell factory for malic acid production, yet strategies to further enhance production remain unclear and lack rational guidance. 13C-MFA (13C metabolic flux analysis) offers a means to analyze cellular metabolic mechanisms and pinpoint critical nodes for improving product synthesis. Here, we employed 13C-MFA to investigate the metabolic flux distribution of a high-malic acid-producing strain of M. thermophila and attempted to decipher the crucial bottlenecks in the metabolic pathways. RESULTS Compared with the wild-type strain, the high-Malic acid-producing strain M. thermophila JG207 exhibited greater glucose uptake and carbon dioxide evolution rates but lower oxygen uptake rates and biomass yields. Consistent with these phenotypes, the 13C-MFA results showed that JG207 displayed elevated flux through the EMP pathway and downstream TCA cycle, along with reduced oxidative phosphorylation flux, thereby providing more precursors and NADH for malic acid synthesis. Furthermore, based on the 13C-MFA results, we conducted oxygen-limited culture and nicotinamide nucleotide transhydrogenase (NNT) gene knockout experiments to increase the cytoplasmic NADH level, both of which were shown to be beneficial for malic acid accumulation. CONCLUSIONS This work elucidates and validates the key node for achieving high malic acid production in M. thermophila. We propose effective fermentation strategies and genetic modifications for enhancing malic acid production. These findings offer valuable guidance for the rational design of future cell factories aimed at improving malic acid yields.
Collapse
Affiliation(s)
- Junfeng Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Defei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Jingen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| |
Collapse
|
2
|
Ma S, Su T, Lu X, Qi Q. Bacterial genome reduction for optimal chassis of synthetic biology: a review. Crit Rev Biotechnol 2024; 44:660-673. [PMID: 37380345 DOI: 10.1080/07388551.2023.2208285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/30/2023]
Abstract
Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| |
Collapse
|
3
|
Vogeleer P, Millard P, Arbulú ASO, Pflüger-Grau K, Kremling A, Létisse F. Metabolic impact of heterologous protein production in Pseudomonas putida: Insights into carbon and energy flux control. Metab Eng 2024; 81:26-37. [PMID: 37918614 DOI: 10.1016/j.ymben.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
For engineered microorganisms, the production of heterologous proteins that are often useless to host cells represents a burden on resources, which have to be shared with normal cellular processes. Within a certain metabolic leeway, this competitive process has no impact on growth. However, once this leeway, or free capacity, is fully utilized, the extra load becomes a metabolic burden that inhibits cellular processes and triggers a broad cellular response, reducing cell growth and often hindering the production of heterologous proteins. In this study, we sought to characterize the metabolic rearrangements occurring in the central metabolism of Pseudomonas putida at different levels of metabolic load. To this end, we constructed a P. putida KT2440 strain that expressed two genes encoding fluorescent proteins, one in the genome under constitutive expression to monitor the free capacity, and the other on an inducible plasmid to probe heterologous protein production. We found that metabolic fluxes are considerably reshuffled, especially at the level of periplasmic pathways, as soon as the metabolic load exceeds the free capacity. Heterologous protein production leads to the decoupling of anabolism and catabolism, resulting in large excess energy production relative to the requirements of protein biosynthesis. Finally, heterologous protein production was found to exert a stronger control on carbon fluxes than on energy fluxes, indicating that the flexible nature of P. putida's central metabolic network is solicited to sustain energy production.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France
| | - Pierre Millard
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France; MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Ana-Sofia Ortega Arbulú
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Katharina Pflüger-Grau
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Andreas Kremling
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Fabien Létisse
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France.
| |
Collapse
|
4
|
Wilkes RA, Waldbauer J, Carroll A, Nieto-Domínguez M, Parker DJ, Zhang L, Guss AM, Aristilde L. Complex regulation in a Comamonas platform for diverse aromatic carbon metabolism. Nat Chem Biol 2023; 19:651-662. [PMID: 36747056 PMCID: PMC10154247 DOI: 10.1038/s41589-022-01237-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/29/2022] [Indexed: 02/08/2023]
Abstract
Critical to a sustainable energy future are microbial platforms that can process aromatic carbons from the largely untapped reservoir of lignin and plastic feedstocks. Comamonas species present promising bacterial candidates for such platforms because they can use a range of natural and xenobiotic aromatic compounds and often possess innate genetic constraints that avoid competition with sugars. However, the metabolic reactions of these species are underexplored, and the regulatory mechanisms are unknown. Here we identify multilevel regulation in the conversion of lignin-related natural aromatic compounds, 4-hydroxybenzoate and vanillate, and the plastics-related xenobiotic aromatic compound, terephthalate, in Comamonas testosteroni KF-1. Transcription-level regulation controls initial catabolism and cleavage, but metabolite-level thermodynamic regulation governs fluxes in central carbon metabolism. Quantitative 13C mapping of tricarboxylic acid cycle and cataplerotic reactions elucidates key carbon routing not evident from enzyme abundance changes. This scheme of transcriptional activation coupled with metabolic fine-tuning challenges outcome predictions during metabolic manipulations.
Collapse
Affiliation(s)
- Rebecca A Wilkes
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Austin Carroll
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Darren J Parker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lichun Zhang
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA.
- Northwestern Center for Synthetic Biology, Evanston, IL, USA.
| |
Collapse
|
5
|
Acid tolerant multicomponent bacterial enzymes production enhancement under the influence of corn cob waste substrate. Int J Food Microbiol 2022; 373:109698. [DOI: 10.1016/j.ijfoodmicro.2022.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
|
6
|
Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, Makowka A, Hildebrandt S, Gutekunst K, Portais JC, Wittmann C. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microb Cell Fact 2022; 21:69. [PMID: 35459213 PMCID: PMC9034593 DOI: 10.1186/s12934-022-01790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. RESULTS Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. CONCLUSIONS The developed approach, based on parallel 13C tracer studies with GC-MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.
Collapse
Affiliation(s)
- Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | | | | | - Kirstin Gutekunst
- Institute of Botany, Christian-Albrecht University, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
7
|
Koryagina AO, Osmanova FR, Toymentseva AA, Laikov AV, Sharipova MR. Quantitative Analysis of Bacillus pumilus Serine Proteinases in Recombinant Bacillus Strains. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
de Oliveira RD, Novello V, da Silva LF, Gomez JGC, Le Roux GAC. Glucose metabolism in Pseudomonas aeruginosa is cyclic when producing Polyhydroxyalkanoates and Rhamnolipids. J Biotechnol 2021; 342:54-63. [PMID: 34687809 DOI: 10.1016/j.jbiotec.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa is an important chassis for production of polyhydroxyalkanoates (PHA) and rhamnolipids (RHL). Advances in the understanding of the biosynthesis metabolism of these biocompounds are crucial for increasing yield. 13C-Metabolic Flux Ratio Analysis (13C-MFA) is a technique to estimate in vivo metabolic fluxes ratios. PHA and RHL are essentially non-growth associated products of biotechnological interest and both contain hydroxyalkanoates (HAs), whose labeling patterns could be accessed by GC-MS. In this study, to reveal the relative contributions of the Entner-Doudoroff (ED) pathway and the non-oxidative Pentose Phosphate (PP) pathway to PHA and RHL production, 13C-MFA was performed in Pseudomonas aeruginosa LFM634 when supplied with labeled glucose. This bacterial strain lacks both functional EMP and the oxidative PP branch. Labeling patterns in HAs were measured. Experiments with [U-13C] glucose indicated a low flux though PP pathway. An optimal design of labeling experiment showed that [6-13C] glucose would be the best substrate to enable an estimation of the ED flux with high accuracy. Results of experiments performed with this isotope indicated that about two-thirds of glyceraldehyde 3-phosphate is recycled through a cyclic ED architecture, suggesting that P. aeruginosa utilizes that cycle to regulate the NADPH/Acetyl-CoA ratio for PHA and RHL biosynthesis.
Collapse
Affiliation(s)
| | - Vânia Novello
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
10
|
Wita A, Białas W, Wilk R, Szychowska K, Czaczyk K. The Influence of Temperature and Nitrogen Source on Cellulolytic Potential of Microbiota Isolated from Natural Environment. Pol J Microbiol 2019; 68:105-114. [PMID: 31050258 PMCID: PMC7256761 DOI: 10.21307/pjm-2019-012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 02/04/2023] Open
Abstract
Bacteria from the genus Bacillus are a rich source of commercial enzymes, including amylases, proteases, cellulases, glucose isomerase, and pullulanase. Cellulases account for 15% of the global market of industrial enzymes; thus, new microorganisms producing cellulases in a higher concentration and new ingredients, which can enhance the level of enzyme synthesis, are still needed. Many of cellulose-degrading microorganisms have been isolated so far and characterized in various regions of the world. In this study, we were looking for the bacteria isolated from the natural environment with the high cellulolytic potential, which could be used as components of a biopreparation to accelerate decomposition of postharvest leftovers in agriculture. The 214 bacterial strains were isolated from environmental samples rich in cellulose and their ability to synthesize cellulases were examined using the diffusion method. Six strains, which have the highest diameter of clearing zone both for biomass and supernatant, were selected for identification. Optimization of biosynthesis of the cellulose-degrading enzymes indicated that optimal temperature of this process fluctuated in the range of 21–42°C (depending on the strain and carbon source). The highest cellulolytic activity was observed for the isolates designed as 4/7 (identified as Bacillus subtilis) and 4/18 (identified as Bacillus licheniformis) in a temperature of 32°C. With the use of a desirability function methodology, the optimal medium composition to achieve a simple, cost-efficient process of cellulases production was developed for both strains. These experiments show that microorganisms isolated from natural environmental samples have unique properties and potential for commercial applications (e.g. for biopreparations production).
Collapse
Affiliation(s)
- Agnieszka Wita
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences , Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences , Poland
| | | | | | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences , Poland
| |
Collapse
|
11
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
12
|
Yao R, Li J, Feng L, Zhang X, Hu H. 13C metabolic flux analysis-guided metabolic engineering of Escherichia coli for improved acetol production from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:29. [PMID: 30805028 PMCID: PMC6373095 DOI: 10.1186/s13068-019-1372-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/06/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Bioprocessing offers a sustainable and green approach to manufacture various chemicals and materials. Development of bioprocesses requires transforming common producer strains to cell factories. 13C metabolic flux analysis (13C-MFA) can be applied to identify relevant targets to accomplish the desired phenotype, which has become one of the major tools to support systems metabolic engineering. In this research, we applied 13C-MFA to identify bottlenecks in the bioconversion of glycerol into acetol by Escherichia coli. Valorization of glycerol, the main by-product of biodiesel, has contributed to the viability of biofuel economy. RESULTS We performed 13C-MFA and measured intracellular pyridine nucleotide pools in a first-generation acetol producer strain (HJ06) and a non-producer strain (HJ06C), and identified that engineering the NADPH regeneration is a promising target. Based on this finding, we overexpressed nadK encoding NAD kinase or pntAB encoding membrane-bound transhydrogenase either individually or in combination with HJ06, obtaining HJ06N, HJ06P and HJ06PN. The step-wise approach resulted in increasing the acetol titer from 0.91 g/L (HJ06) to 2.81 g/L (HJ06PN). To systematically characterize and the effect of mutation(s) on the metabolism, we also examined the metabolomics and transcriptional levels of key genes in four strains. The pool sizes of NADPH, NADP+ and the NADPH/NADP+ ratio were progressively increased from HJ06 to HJ06PN, demonstrating that the sufficient NADPH supply is critical for acetol production. Flux distribution was optimized towards acetol formation from HJ06 to HJ06PN: (1) The carbon partitioning at the DHAP node directed gradually more carbon from the lower glycolytic pathway through the acetol biosynthetic pathway; (2) The transhydrogenation flux was constantly increased. In addition, 13C-MFA showed the rigidity of upper glycolytic pathway, PP pathway and the TCA cycle to support growth. The flux patterns were supported by most metabolomics data and gene expression profiles. CONCLUSIONS This research demonstrated how 13C-MFA can be applied to drive the cycles of design, build, test and learn implementation for strain development. This succeeding engineering strategy can also be applicable for rational design of other microbial cell factories.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Jiawei Li
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
13
|
Daniels W, Bouvin J, Busche T, Rückert C, Simoens K, Karamanou S, Van Mellaert L, Friðjónsson ÓH, Nicolai B, Economou A, Kalinowski J, Anné J, Bernaerts K. Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. Microb Cell Fact 2018; 17:198. [PMID: 30577858 PMCID: PMC6302529 DOI: 10.1186/s12934-018-1040-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and [Formula: see text]-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)-previously shown to be successfully overexpressed in S. lividans-was taken as an example protein. RESULTS RNA-seq and [Formula: see text]-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion. CONCLUSIONS Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterologous protein production.
Collapse
Affiliation(s)
- Wouter Daniels
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium
| | - Jeroen Bouvin
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Kenneth Simoens
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | - Lieve Van Mellaert
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | | | - Bart Nicolai
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium.
| |
Collapse
|
14
|
Hayakawa K, Matsuda F, Shimizu H. 13C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-L-methionine production. Microb Cell Fact 2018; 17:82. [PMID: 29855316 PMCID: PMC5977476 DOI: 10.1186/s12934-018-0935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is a host for the industrial production of S-adenosyl-L-methionine (SAM), which has been widely used in pharmaceutical and nutritional supplement industries. It has been reported that the intracellular SAM content in S. cerevisiae can be improved by the addition of ethanol during cultivation. However, the metabolic state in ethanol-assimilating S. cerevisiae remains unclear. In this study, 13C-metabolic flux analysis (13C-MFA) was conducted to investigate the metabolic regulation responsible for the high SAM production from ethanol. RESULTS The comparison between the metabolic flux distributions of central carbon metabolism showed that the metabolic flux levels of the tricarboxylic acid cycle and glyoxylate shunt in the ethanol culture were significantly higher than that of glucose. Estimates of the ATP balance from the 13C-MFA data suggested that larger amounts of excess ATP was produced from ethanol via increased oxidative phosphorylation. The finding was confirmed by the intracellular ATP level under ethanol-assimilating condition being similarly higher than glucose. CONCLUSIONS These results suggest that the enhanced ATP regeneration due to ethanol assimilation was critical for the high SAM accumulation.
Collapse
Affiliation(s)
- Kenshi Hayakawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.,KANEKA Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Biotechnology Development Laboratories, Health Care Solutions Research Institute, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Wang J, Liu S, Li Y, Wang H, Xiao S, Li C, Liu B. Central carbon metabolism influences cellulase production in Bacillus licheniformis. Lett Appl Microbiol 2017; 66:49-54. [PMID: 29063629 DOI: 10.1111/lam.12813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 01/19/2023]
Abstract
Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. SIGNIFICANCE AND IMPACT OF THE STUDY Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering.
Collapse
Affiliation(s)
- J Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - S Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Y Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - H Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - S Xiao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - C Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - B Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
16
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
17
|
Tanaka K, Natsume A, Ishikawa S, Takenaka S, Yoshida KI. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microb Cell Fact 2017; 16:67. [PMID: 28431560 PMCID: PMC5401388 DOI: 10.1186/s12934-017-0682-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A stereoisomer of inositol, scyllo-inositol (SI), has been regarded as a promising therapeutic agent for Alzheimer's disease. However, this compound is relatively rare, whereas another stereoisomer of inositol, myo-inositol (MI) is abundant in nature. Bacillus subtilis 168 has the ability to metabolize inositol stereoisomers, including MI and SI. Previously, we reported a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. The strain was constructed by deleting all genes related to inositol metabolism and overexpressing key enzymes, IolG and IolW. By using this strain, 10 g/l of MI initially included in the medium was completely converted into SI within 48 h of cultivation in a rich medium containing 2% (w/v) Bacto soytone. RESULTS When the initial concentration of MI was increased to 50 g/l, conversion was limited to 15.1 g/l of SI. Therefore, overexpression systems of IolT and PntAB, the main transporter of MI in B. subtilis and the membrane-integral nicotinamide nucleotide transhydrogenase in Escherichia coli respectively, were additionally introduced into the B. subtilis cell factory, but the conversion efficiency hardly improved. We systematically determined the amount of Bacto soytone necessary for ultimate conversion, which was 4% (w/v). As a result, the conversion of SI reached to 27.6 g/l within 48 h of cultivation. CONCLUSIONS The B. subtilis cell factory was improved to yield a SI production rate of 27.6 g/l/48 h by simultaneous overexpression of IolT and PntAB, and by addition of 4% (w/v) Bacto soytone in the conversion medium. The concentration of SI was increased even in the stationary phase perhaps due to nutrients in the Bacto soytone that contribute to the conversion process. Thus, MI conversion to SI may be further optimized via identification and control of these unknown nutrients.
Collapse
Affiliation(s)
- Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Ayane Natsume
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, Kobe, Japan
| | - Shu Ishikawa
- Graduate School of Science, Technology and Innovation, Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Shinji Takenaka
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, Kobe, Japan
| | - Ken-Ichi Yoshida
- Graduate School of Science, Technology and Innovation, Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
18
|
Hadadi N, Hafner J, Soh KC, Hatzimanikatis V. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Noushin Hadadi
- Laboratory of Computational Systems Biotechnology (LCSB); Swiss Federal Institute of Technology (EPFL); Lausanne Switzerland
| | - Jasmin Hafner
- Laboratory of Computational Systems Biotechnology (LCSB); Swiss Federal Institute of Technology (EPFL); Lausanne Switzerland
| | - Keng Cher Soh
- Laboratory of Computational Systems Biotechnology (LCSB); Swiss Federal Institute of Technology (EPFL); Lausanne Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB); Swiss Federal Institute of Technology (EPFL); Lausanne Switzerland
| |
Collapse
|
19
|
Martínez-García E, de Lorenzo V. The quest for the minimal bacterial genome. Curr Opin Biotechnol 2016; 42:216-224. [DOI: 10.1016/j.copbio.2016.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
|
20
|
Combined 13C-assisted metabolomics and metabolic flux analysis reveals the impacts of glutamate on the central metabolism of high β-galactosidase-producing Pichia pastoris. BIORESOUR BIOPROCESS 2016; 3:47. [PMID: 27867835 PMCID: PMC5093185 DOI: 10.1186/s40643-016-0124-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background Pichia pastoris is a popular recombinant protein expression system for its accessibility of efficient gene manipulation and high protein production. Sufficient supply of precursors, energy, and redox cofactors is crucial for high recombinant protein production. In our present work, we found that the addition of glutamate improved the recombinant β-galactosidase (β-gal) production by P. pastoris G1HL. Methods To elucidate the impacts of glutamate on the central metabolism in detail, a combined 13C-assisted metabolomics and 13C metabolic flux analysis was conducted based on LC–MS/MS and GC–MS data. Results The pool sizes of intracellular amino acids were obviously higher on glucose/glutamate (Glc/Glu). The fluxes in EMP entry reaction and in downstream TCA cycle were 50 and 67% higher on Glc/Glu than on Glc, respectively. While the fluxes in upstream TCA cycle kept almost unaltered, the fluxes in PPP oxidative branch decreased. Conclusion The addition of glutamate leads to a remarkable change on the central metabolism of high β-galactosidase-producing P. pastoris G1HL. To meet the increased demands of redox cofactors and energy for higher β-galactosidase production on Glc/Glu, P. pastoris G1HL redistributes the fluxes in central metabolism through the inhibitions and/or activation of the enzymes in key nodes together with the energy and redox status. Electronic supplementary material The online version of this article (doi:10.1186/s40643-016-0124-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Li Y, Zhu X, Zhang X, Fu J, Wang Z, Chen T, Zhao X. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microb Cell Fact 2016; 15:94. [PMID: 27260256 PMCID: PMC4893254 DOI: 10.1186/s12934-016-0494-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Genome streamlining has emerged as an effective strategy to boost the production efficiency of bio-based products. Many efforts have been made to construct desirable chassis cells by reducing the genome size of microbes. It has been reported that the genome-reduced Bacillus subtilis strain MBG874 showed clear advantages for the production of several heterologous enzymes including alkaline cellulase and protease. In addition to enzymes, B. subtilis is also used for the production of chemicals. To our best knowledge, it is still unknown whether genome reduction could be used to optimize the production of chemicals such as nucleoside products. Results In this study, we constructed a series of genome-reduced strains by deleting non-essential regions in the chromosome of B. subtilis 168. These strains with genome reductions ranging in size from 581.9 to 814.4 kb displayed markedly decreased growth rates, sporulation ratios, transformation efficiencies and maintenance coefficients, as well as increased cell yields. We re-engineered the genome-reduced strains to produce guanosine and thymidine, respectively. The strain BSK814G2, in which purA was knocked out, and prs, purF and guaB were co-overexpressed, produced 115.2 mg/L of guanosine, which was 4.4-fold higher compared to the control strain constructed by introducing the same gene modifications into the parental strain. We also constructed a thymidine producer by deleting the tdk gene and overexpressing the prs, ushA, thyA, dut, and ndk genes from Escherichia coli in strain BSK756, and the resulting strain BSK756T3 accumulated 151.2 mg/L thymidine, showing a 5.2-fold increase compared to the corresponding control strain. Conclusions Genome-scale genetic manipulation has a variety of effects on the physiological characteristics and cell metabolism of B. subtilis. By introducing specific gene modifications related to guanosine and thymidine accumulation, respectively, we demonstrated that genome-reduced strains had greatly improved properties compared to the wild-type strain as chassis cells for the production of these two products. These strains also have great potential for the production of other nucleosides and similar derived chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0494-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Xujun Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xueyu Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Tianjin Vocational College of Bioengineering, Tianjin, 300462, China
| | - Jing Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
22
|
Toya Y, Hirasawa T, Ishikawa S, Chumsakul O, Morimoto T, Liu S, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis. Biosci Biotechnol Biochem 2015; 79:2073-80. [DOI: 10.1080/09168451.2015.1060843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.
Collapse
Affiliation(s)
- Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
| | - Takashi Hirasawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Shu Ishikawa
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Onuma Chumsakul
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takuya Morimoto
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Shenghao Liu
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Kenta Masuda
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Yasushi Kageyama
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Katsuya Ozaki
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Naotake Ogasawara
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
| |
Collapse
|
23
|
McAtee AG, Jazmin LJ, Young JD. Application of isotope labeling experiments and 13C flux analysis to enable rational pathway engineering. Curr Opin Biotechnol 2015; 36:50-6. [DOI: 10.1016/j.copbio.2015.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/24/2022]
|
24
|
Hayakawa K, Kajihata S, Matsuda F, Shimizu H. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae. J Biosci Bioeng 2015; 120:532-8. [PMID: 25912448 DOI: 10.1016/j.jbiosc.2015.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
S-Adenosyl-L-methionine (SAM) is a major biological methyl group donor, and is used as a nutritional supplement and prescription drug. Yeast is used for the industrial production of SAM owing to its high intracellular SAM concentrations. To determine the regulation mechanisms responsible for such high SAM production, (13)C-metabolic flux analysis ((13)C-MFA) was conducted to compare the flux distributions in the central metabolism between Kyokai no. 6 (high SAM-producing) and S288C (control) strains. (13)C-MFA showed that the levels of tricarboxylic acid (TCA) cycle flux in SAM-overproducing strain were considerably increased compared to those in the S228C strain. Analysis of ATP balance also showed that a larger amount of excess ATP was produced in the Kyokai 6 strain because of increased oxidative phosphorylation. These results suggest that high SAM production in Kyokai 6 strains could be attributed to enhanced ATP regeneration with high TCA cycle fluxes and respiration activity. Thus, maintaining high respiration efficiency during cultivation is important for improving SAM production.
Collapse
Affiliation(s)
- Kenshi Hayakawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; KANEKA Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shuichi Kajihata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
25
|
Young JD. (13)C metabolic flux analysis of recombinant expression hosts. Curr Opin Biotechnol 2014; 30:238-45. [PMID: 25456032 DOI: 10.1016/j.copbio.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 12/11/2022]
Abstract
Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.
Collapse
Affiliation(s)
- Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA.
| |
Collapse
|
26
|
|
27
|
Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via (13)C metabolic flux analysis. J Biotechnol 2014; 187:124-34. [PMID: 25058396 DOI: 10.1016/j.jbiotec.2014.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/20/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022]
Abstract
The yeast Pichia pastoris GS115 is a widely used microbial cell factory for the production of heterologous protein. In order to reveal the impacts of high heterologous protein expression on the central metabolism of Pichia pastoris GS115 using glucose as sole carbon source, we engineered a high β-galactosidase expression strain P. pastoris G1HL and a low expression control strain P. pastoris GHL through controlling the initiation strength of constitutive promoter pGAP. The carbon flux distributions in these two strains were quantified via (13)C metabolic flux analysis. Compared to the control strain, G1HL showed a lower growth rate, a higher flux through glycolysis pathway, a higher flux through pentose phosphate pathway, and a lower flux through by-products secretion pathway. The metabolic flux redistribution in G1HL was thought to compensate the increased redox cofactors and energy demands caused by the high protein expression. Although the fluxes through Krebs cycle in two engineered strains were almost the same, they were significantly lower than those in wild strain. The enhanced expression of β-galactosidase by glutamate supplementation demonstrated the potential of P. pastoris GS115 to catabolize more carbon through the Krebs cycle for even higher protein expression. In conclusion, our work indicates that P. pastoris GS115 can readjusts the central metabolism for higher heterologous protein expression and provides strategies for strain development or process optimization for enhancing production of heterologous protein.
Collapse
|
28
|
Apte AA, Senger RS, Fong SS. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis. Bioengineered 2014; 5:243-53. [PMID: 24830736 DOI: 10.4161/bioe.29160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.
Collapse
Affiliation(s)
- Advait A Apte
- Department of Biological Systems Engineering; Virginia Tech; Blacksburg, VA USA
| | - Ryan S Senger
- Department of Biological Systems Engineering; Virginia Tech; Blacksburg, VA USA
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|