1
|
Nold NM, Kriz SA, Waldack S, James G, Colling T, Sarvari T, Sharma V, Pohkrel A, Burghardt E, Joshi PU, Heldt CL. Purification of a non-enveloped virus using sequential aqueous two-phase extraction. J Chromatogr A 2025; 1748:465866. [PMID: 40112642 DOI: 10.1016/j.chroma.2025.465866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Virus-based vaccines and therapies require a purification method that is both cost-effective and easily scalable. An aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and citrate salt has been proven to deliver high virus recoveries along with high impurity removal. However, these systems often place the virus into a viscous PEG-rich phase or at the two-phase interface, leading to difficulties in subsequent downstream processes. This study explored a second ATPS to extract the virus product back into the citrate-rich phase by changing the chemical conditions, a required step for future application of ATPS in industrial processes. ATPS performance was tested as a function of phase component concentration, phase component volume ratios, PEG molecular weight, salt type, pH, and glycine addition to identify the most impactful parameters for the extraction of non-enveloped porcine parvovirus (PPV). By shifting the pH, lowering phase component concentrations, and increasing the volume ratio of the citrate-rich phase between the first and second ATPS steps, 66 % of infectious PPV was recovered with 2.0 logs of host cell protein removal and 1.0 logs of host cell DNA removal. Using a PEG molecular weight of 8 kDa enabled a pH shift between the first and second ATPS steps without precipitation. Glycine addition during the first step of ATPS and phosphate salt use during the second step of ATPS did not significantly increase the overall recovery. In future studies, the optimized process will be implemented for multiple viral vector types and continuously to demonstrate continuous and low-cost viral vector manufacturing.
Collapse
Affiliation(s)
- Natalie M Nold
- Department of Chemical Engineering, Michigan Technological University, USA; Health Research Institute, Michigan Technological University, USA
| | - Seth A Kriz
- Department of Chemical Engineering, Michigan Technological University, USA; Health Research Institute, Michigan Technological University, USA
| | - Sheridan Waldack
- Department of Chemical Engineering, Michigan Technological University, USA
| | - Grace James
- Department of Chemical Engineering, Michigan Technological University, USA
| | - Trisha Colling
- Department of Chemical Engineering, Michigan Technological University, USA
| | - Taravat Sarvari
- Department of Chemical Engineering, Michigan Technological University, USA; Health Research Institute, Michigan Technological University, USA
| | - Vaishali Sharma
- Department of Biological Sciences, Michigan Technological University, USA
| | - Alexis Pohkrel
- Department of Chemical Engineering, Michigan Technological University, USA
| | - Ethan Burghardt
- Department of Chemistry, Michigan Technological University, USA
| | - Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, USA; Health Research Institute, Michigan Technological University, USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, USA; Health Research Institute, Michigan Technological University, USA.
| |
Collapse
|
2
|
Zajac JWP, Muralikrishnan P, Tohidian I, Zeng X, Heldt CL, Perry SL, Sarupria S. Flipping out: role of arginine in hydrophobic interactions and biological formulation design. Chem Sci 2025; 16:6780-6792. [PMID: 40110519 PMCID: PMC11915020 DOI: 10.1039/d4sc08672d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
Arginine has been a mainstay in biological formulation development for decades. To date, the way arginine modulates protein stability has been widely studied and debated. Here, we employed a hydrophobic polymer to decouple hydrophobic effects from other interactions relevant to protein folding. While existing hypotheses for the effects of arginine can generally be categorized as either direct or indirect, our results indicate that direct and indirect mechanisms of arginine co-exist and oppose each other. At low concentrations, arginine was observed to stabilize hydrophobic polymer folding via a sidechain-dominated direct mechanism, while at high concentrations, arginine stabilized polymer folding via a backbone-dominated indirect mechanism. Upon introducing partially charged polymer sites, arginine destabilized polymer folding. Further, we found arginine-induced destabilization of a model virus similar to direct-mechanism destabilization of the charged polymer and concentration-dependent stabilization of a model protein similar to the indirect mechanism of hydrophobic polymer stabilization. These findings highlight the modular nature of the widely used additive arginine, with relevance in the information-driven design of stable biological formulations.
Collapse
Affiliation(s)
- Jonathan W P Zajac
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Praveen Muralikrishnan
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Idris Tohidian
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Xianci Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Sapna Sarupria
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
3
|
Joshi PU, Turpeinen DG, Schroeder M, Jones B, Lyons A, Kriz S, Khaksari M, O'Hagan D, Nikam S, Heldt CL. Osmolyte enhanced aqueous two-phase system for virus purification. Biotechnol Bioeng 2021; 118:3251-3262. [PMID: 34129733 DOI: 10.1002/bit.27849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023]
Abstract
Due to the high variation in viral surface properties, a platform method for virus purification is still lacking. A potential alternative to the high-cost conventional methods is aqueous two-phase systems (ATPSs). However, optimizing virus purification in ATPS requires a large experimental design space, and the optimized systems are generally found to operate at high ATPS component concentrations. The high concentrations capitalize on hydrophobic and electrostatic interactions to obtain high viral particle yields. This study investigated using osmolytes as driving force enhancers to reduce the high concentration of ATPS components while maintaining high yields. The partitioning behavior of porcine parvovirus (PPV), a nonenveloped mammalian virus, and human immunodeficiency virus-like particle (HIV-VLP), a yeast-expressed enveloped VLP, were studied in a polyethylene glycol (PEG) 12 kDa-citrate system. The partitioning of the virus modalities was enhanced by osmoprotectants glycine and betaine, while trimethylamine N-oxide was ineffective for PPV. The increased partitioning to the PEG-rich phase pertained only to viruses, resulting in high virus purification. Recoveries were 100% for infectious PPV and 92% for the HIV-VLP, with high removal of the contaminant proteins and more than 60% DNA removal when glycine was added. The osmolyte-induced ATPS demonstrated a versatile method for virus purification, irrespective of the expression system.
Collapse
Affiliation(s)
- Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Dylan G Turpeinen
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Michael Schroeder
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Bianca Jones
- Department of Biochemistry, University of Detroit-Mercy, Detroit, Michigan, USA
| | - Audrey Lyons
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Seth Kriz
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Maryam Khaksari
- Great Lakes Research Center, Michigan Technological University, Houghton, Michigan, USA
| | | | | | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
4
|
Marchel M, Niewisiewicz J, Coroadinha AS, Marrucho IM. Purification of virus-like particles using aqueous biphasic systems composed of natural deep eutectic solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Mi X, Lucier EM, Turpeinen DG, Yeo ELL, Kah JCY, Heldt CL. Mannitol-induced gold nanoparticle aggregation for the ligand-free detection of viral particles. Analyst 2019; 144:5486-5496. [DOI: 10.1039/c9an00830f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addition of osmolytes causes viruses-coated AuNPs to aggregate and not protein-coated AuNPs. Ligand-free detection of virus was developed without the need for prior knowledge of the specific virus target.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering
- Michigan Technological University
- USA
| | | | | | - Eugenia Li Ling Yeo
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Caryn L. Heldt
- Department of Chemical Engineering
- Michigan Technological University
- USA
| |
Collapse
|
6
|
Hasan T, Kumari K, Devi SC, Handa J, Rehman T, Ansari NA, Singh LR. Osmolytes in vaccine production, flocculation and storage: a critical review. Hum Vaccin Immunother 2018; 15:514-525. [PMID: 30273503 DOI: 10.1080/21645515.2018.1526585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small molecule osmolytes, responsible for protecting stresses have long been known to rescue proteins and enzymes from loss of function. In addition to protecting macromolecules integrity, many osmolytes also act as potential antioxidant and also help to prevent protein aggregation, amyloid formation or misfolding, and therefore are considered promising molecules for neurodegenerative and many other genetic diseases. Osmolytes are also known to be involved in the regulation of several key immunological processes. In the present review we discuss in detail the effect of these compounds on important aspects of vaccines i.e., increasing the efficiency, production and purification steps. The present review therefore will help researchers to make a better strategy in vaccine production to formulation by incorporating specific and appropriate osmolytes in the processes.
Collapse
Affiliation(s)
- Tauheed Hasan
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Kritika Kumari
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | | | - Jaya Handa
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Tabish Rehman
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Nasim Akhtar Ansari
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | | |
Collapse
|
7
|
Heldt CL, Saksule A, Joshi PU, Ghafarian M. A generalized purification step for viral particles using mannitol flocculation. Biotechnol Prog 2018; 34:1027-1035. [DOI: 10.1002/btpr.2651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Caryn L. Heldt
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Ashish Saksule
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Pratik U. Joshi
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Majid Ghafarian
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| |
Collapse
|
8
|
Heldt CL, Zahid A, Vijayaragavan KS, Mi X. Experimental and computational surface hydrophobicity analysis of a non-enveloped virus and proteins. Colloids Surf B Biointerfaces 2017; 153:77-84. [DOI: 10.1016/j.colsurfb.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/08/2017] [Accepted: 02/09/2017] [Indexed: 12/01/2022]
|
9
|
Besnard L, Fabre V, Fettig M, Gousseinov E, Kawakami Y, Laroudie N, Scanlan C, Pattnaik P. Clarification of vaccines: An overview of filter based technology trends and best practices. Biotechnol Adv 2016; 34:1-13. [DOI: 10.1016/j.biotechadv.2015.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/28/2015] [Accepted: 11/29/2015] [Indexed: 12/18/2022]
|
10
|
Gencoglu MF, Heldt CL. Enveloped virus flocculation and removal in osmolyte solutions. J Biotechnol 2015; 206:8-11. [DOI: 10.1016/j.jbiotec.2015.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
|
11
|
Venkiteshwaran A, Fogle J, Patnaik P, Kowle R, Chen D. Mechanistic evaluation of virus clearance by depth filtration. Biotechnol Prog 2015; 31:431-7. [PMID: 25683459 DOI: 10.1002/btpr.2061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/27/2015] [Indexed: 11/07/2022]
Abstract
Virus clearance by depth filtration has not been well-understood mechanistically due to lack of quantitative data on filter charge characteristics and absence of systematic studies. It is generally believed that both electrostatic interactions and sized based mechanical entrapment contribute to virus clearance by depth filtration. In order to establish whether the effectiveness of virus clearance correlates with the charge characteristics of a given depth filter, a counter-ion displacement technique was employed to determine the ionic capacity for several depth filters. Two depth filters (Millipore B1HC and X0HC) with significant differences in ionic capacities were selected and evaluated for their ability to eliminate viruses. The high ionic capacity X0HC filter showed complete porcine parvovirus (PPV) clearance (eliminating the spiked viruses to below the limit of detection) under low conductivity conditions (≤2.5 mS/cm), achieving a log10 reduction factor (LRF) of > 4.8. On the other hand, the low ionic capacity B1HC filter achieved only ∼2.1-3.0 LRF of PPV clearance under the same conditions. These results indicate that parvovirus clearance by these two depth filters are mainly achieved via electrostatic interactions between the filters and PPV. When much larger xenotropic murine leukemia virus (XMuLV) was used as the model virus, complete retrovirus clearance was obtained under all conditions evaluated for both depth filters, suggesting the involvement of mechanisms other than just electrostatic interactions in XMuLV clearance.
Collapse
Affiliation(s)
- Adith Venkiteshwaran
- Dept. of Bioproduct Research, Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, DC3941 Lilly Corporate Center, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|