Hosseini M, Mohammadi S, Borghei YS, Ganjali MR. Detection of p53 Gene Mutation (Single-Base Mismatch) Using a Fluorescent Silver Nanoclusters.
J Fluoresc 2017;
27:1443-1448. [PMID:
28405933 DOI:
10.1007/s10895-017-2083-5]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/04/2017] [Indexed: 02/01/2023]
Abstract
P53 mutation was detected through the application of a biosensing approach based on the decrease in the fluorescence of oligonucleotide-templated silver nanoclusters (DNA-AgNCs). To this end specific DNA scaffolds of two various nucleotide fragments were used. One of the scaffolds was enriched with two cytosine sequence fragment (C12). This led to DNA-AgNCs with a fluorescence intensity through chemical reduction, while the other scaffold acted as the probe fragment (5- GTAGATGGCCATGGCGCGGACGCGGGTG-3). This latter scaffold selectively bound to the specific p53 site. Thus, resulting AgNCs demonstrated decreased fluorescence upon binding to single-base mismatching targets, and this behavior was found to be linearly proportional to the concentration of mutated p53 from 5 to 350 nM and the approach was found to be able to detect concentrations as low as 1.3 nM.
Collapse