1
|
Bourne LE, Hesketh A, Sharma A, Bucca G, Bush PG, Staines KA. The effects of physiological and injurious hydrostatic pressure on murine ex vivo articular and growth plate cartilage explants: an RNAseq study. Front Endocrinol (Lausanne) 2023; 14:1278596. [PMID: 38144567 PMCID: PMC10740163 DOI: 10.3389/fendo.2023.1278596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Chondrocytes are continuously exposed to loads placed upon them. Physiological loads are pivotal to the maintenance of articular cartilage health, while abnormal loads contribute to pathological joint degradation. Similarly, the growth plate cartilage is subject to various loads during growth and development. Due to the high-water content of cartilage, hydrostatic pressure is considered one of the main biomechanical influencers on chondrocytes and has been shown to play an important role in the mechano-regulation of cartilage. Methods Herein, we conducted RNAseq analysis of ex vivo hip cap (articular), and metatarsal (growth plate) cartilage cultures subjected to physiological (5 MPa) and injurious (50 MPa) hydrostatic pressure, using the Illumina platform (n = 4 replicates). Results Several hundreds of genes were shown to be differentially modulated by hydrostatic pressure, with the majority of these changes evidenced in hip cap cartilage cultures (375 significantly upregulated and 322 downregulated in 5 MPa versus control; 1022 upregulated and 724 downregulated in 50 MPa versus control). Conversely, fewer genes were differentially affected by hydrostatic pressure in the metatarsal cultures (5 significantly upregulated and 23 downregulated in 5 MPa versus control; 7 significantly upregulated and 19 downregulated in 50 MPa versus control). Using Gene Ontology annotations for Biological Processes, in the hip cap data we identified a number of pathways that were modulated by both physiological and injurious hydrostatic pressure. Pathways upregulated in response to 50 MPa versus control, included those involved in the generation of precursor metabolites and cellular respiration. Biological processes that were downregulated in this tissue included ossification, connective tissue development, and chondrocyte differentiation. Discussion Collectively our data highlights the divergent chondrocyte phenotypes in articular and growth plate cartilage. Further, we show that the magnitude of hydrostatic pressure application has distinct effects on gene expression and biological processes in hip cap cartilage explants. Finally, we identified differential expression of a number of genes that have previously been identified as osteoarthritis risk genes, including Ctsk, and Chadl. Together these data may provide potential genetic targets for future investigations in osteoarthritis research and novel therapeutics.
Collapse
Affiliation(s)
- Lucie E. Bourne
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Andrew Hesketh
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Aikta Sharma
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Giselda Bucca
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Peter G. Bush
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Katherine A. Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
2
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
3
|
Mencio CP, Tilve SM, Suzuki M, Higashi K, Katagiri Y, Geller HM. A novel cytoskeletal action of xylosides. PLoS One 2022; 17:e0269972. [PMID: 35763520 PMCID: PMC9239447 DOI: 10.1371/journal.pone.0269972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Proteoglycan glycosaminoglycan (GAG) chains are attached to a serine residue in the protein through a linkage series of sugars, the first of which is xylose. Xylosides are chemicals which compete with the xylose at the enzyme xylosyl transferase to prevent the attachment of GAG chains to proteins. These compounds have been employed at concentrations in the millimolar range as tools to study the role of GAG chains in proteoglycan function. In the course of our studies with xylosides, we conducted a dose-response curve for xyloside actions on neural cells. To our surprise, we found that concentrations of xylosides in the nanomolar to micromolar range had major effects on cell morphology of hippocampal neurons as well as of Neuro2a cells, affecting both actin and tubulin cytoskeletal dynamics. Such effects/morphological changes were not observed with higher xyloside concentrations. We found a dose-dependent alteration of GAG secretion by Neuro2a cells; however, concentrations of xylosides which were effective in altering neuronal morphology did not cause a large change in the rate of GAG chain secretion. In contrast, both low and high concentrations of xylosides altered HS and CS composition. RNAseq of treated cells demonstrated alterations in gene expression only after treatment with millimolar concentration of xylosides that had no effect on cell morphology. These observations support a novel action of xylosides on neuronal cells.
Collapse
Affiliation(s)
- Caitlin P. Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Sharada M. Tilve
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Masato Suzuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda City, Chiba, Japan
| | - Kohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda City, Chiba, Japan
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Herbert M. Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
4
|
In vitro chondral culture under compression and shear stimuli. From mesenchymal stem cells to hyaline cartilage. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020. [DOI: 10.1016/j.recote.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Sánchez-Pérez C, Fernández-Santos ME, Chana-Rodríguez F, Vaquero-Martín J, Crego-Vita D, Carbó Laso E, González de Torre I, Narbona-Cárceles J. In vitro chondral culture under compression and shear stimuli. From mesenchymal stem cells to hyaline cartilage. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020; 64:380-387. [PMID: 32792287 DOI: 10.1016/j.recot.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/29/2020] [Accepted: 06/14/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The in vitro creation of hyaline joint cartilage is a challenge since, to date, the ex vivo synthesis of a structured tissue with the same biomechanical and histological properties of the joint cartilage has not been achieved. To simulate the physiological conditions we have designed an in vitro culture system that reproduces joint movement. MATERIAL AND METHOD We have developed a cell culture bioreactor that prints a mechanical stimulus on an elastin matrix, in which mesenchymal stem cells (MSC) are embedded. The first phase of study corresponds to the development of a bioreactor for hyaline cartilage culture and the verification of cell viability in the elastin matrix in the absence of stimulus. The second phase of the study includes the MSC culture under mechanical stimulus and the analysis of the resulting tissue. RESULTS After culture under mechanical stimulation we did not obtain hyaline tissue due to lack of cellularity and matrix destructuring. CONCLUSION The stimulus pattern used has not been effective in generating hyaline cartilage, so other combinations should be explored in future research.
Collapse
Affiliation(s)
- C Sánchez-Pérez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España.
| | - M E Fernández-Santos
- Unidad de Producción Celular, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - F Chana-Rodríguez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - J Vaquero-Martín
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - D Crego-Vita
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Central de la Defensa Gómez Ulla, Madrid, España
| | - E Carbó Laso
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | | | - J Narbona-Cárceles
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
6
|
Grigull NP, Redeker JI, Schmitt B, Saller MM, Schönitzer V, Mayer-Wagner S. Chondrogenic Potential of Pellet Culture Compared to High-Density Culture on a Bacterial Cellulose Hydrogel. Int J Mol Sci 2020; 21:ijms21082785. [PMID: 32316353 PMCID: PMC7215943 DOI: 10.3390/ijms21082785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
Cell-based approaches of cartilage lesions use different culture systems to obtain optimal cell quality. Pellet cultures with high cellular density (HD) are the gold standard to keep chondrocytes in a differentiated stage. Bacterial cellulose (BC) hydrogel is discussed to prevent cellular aging and dedifferentiation. The hypothesis of this study was that HD culture on BC hydrogel (HD hydrogel) might reach the chondrogenic potential of pellet culture (pellet). Human articular osteoarthritic (OA) and non-osteoarthritic (non-OA) chondrocytes were cultured for seven days within pellets and compared to HD hydrogel and HD polystyrene. Gene expression analysis and histological assessment were performed. We observed no significant change of COL2A1 expression by the culture system (pellet, HD hydrogel and HD polystyrene) but a significant change of COL2A1/COL1A1-ratio, with the highest ratio in pellets. Chondrocytes on HD hydrogel showed an elevated expression of MMP13 and on polystyrene an increased expression of COL1A1 and MMP13. The patterns of gene expression changes observed in OA and non-OA chondrocytes in reaction to the different culture systems were similar in those two cell groups. Pellet cultures moreover formed a histomorphologically superior neocartilage. Concluding, human chondrocytes kept the potential to express COL2A1 in all HD culture systems. However, pellets excelled in a higher COL2A1/COL1A1-ratio, a higher extracellular matrix deposit and in not developing degeneration and dedifferentiation markers. This underlines the superiority of pellet culture in maintaining the chondrogenic potential of human chondrocytes in vitro.
Collapse
Affiliation(s)
- Nele Pascale Grigull
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.P.G.); (J.I.R.); (B.S.)
| | - Julia Isabelle Redeker
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.P.G.); (J.I.R.); (B.S.)
| | - Bärbel Schmitt
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.P.G.); (J.I.R.); (B.S.)
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Martinsried, Germany; (M.M.S.); (V.S.)
| | - Veronika Schönitzer
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Martinsried, Germany; (M.M.S.); (V.S.)
| | - Susanne Mayer-Wagner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.P.G.); (J.I.R.); (B.S.)
- Correspondence: ; Tel.: +49-89-44007-4857
| |
Collapse
|
7
|
Sharifi N, Gharravi AM. Shear bioreactors stimulating chondrocyte regeneration, a systematic review. Inflamm Regen 2019; 39:16. [PMID: 31410225 PMCID: PMC6686520 DOI: 10.1186/s41232-019-0105-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 01/02/2023] Open
Abstract
It is commonly accepted that the mechanical stimuli are important factors in the maintenance of normal structure and function of the articular cartilage. Despite extensive efforts, the cellular mechanisms underlying the responses of articular chondrocytes to mechanical stresses are not well understood. In the present review, different types of shear bioreactor and potential mechanisms that mediate and regulate the effect of shear on chondrocyte are discussed. For this review, the search of the literature was done in the PubMed, Scopus, Web of sciences databases to identify papers reporting data about shear on chondrocyte. Keywords “shear, chondrocyte, cartilage, bioreactor” were used. Studies published until the first of March 2018 were considered in this paper. The review focused on the experimental studies conducted the effect of shear stress on cartilage tissue in vivo and in vitro. In this review, both experimental studies referring to human and animal tissues were taken into account. The following articles were excluded: reviews, meta-analysis, duplicate records, letters, and papers that did not add significant information. Mechanism of shear stress on chondrocyte, briefly can be hypothesized as (1) altered expression of aggrecan and collagen type II, (2) altered cartilage oligomeric matrix protein (COMP) serum levels, consequently, organizing the arrangement binding of glycosaminoglycans, integrins, and collagen, (3) induction of apoptosis signals, (4) altered expression of integrin.
Collapse
Affiliation(s)
- Negar Sharifi
- 1Student Research Committee, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- 2Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
8
|
Khorshidi S, Ansari S, Naghizadeh Z, Akbari N, Karkhaneh A, Haghighipour N. Concurrent effects of piezoelectricity and hydrostatic pressure on chondrogenic differentiation of stem cells. MATERIALS LETTERS 2019; 246:71-75. [DOI: 10.1016/j.matlet.2019.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
9
|
Salinas EY, Hu JC, Athanasiou K. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:345-358. [PMID: 29562835 DOI: 10.1089/ten.teb.2018.0006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile loading are used to tissue-engineer AC. Our goal is to provide a practical guide to their use and optimization of loading parameters. For each loading condition, we will also present and discuss benefits and limitations of bioreactor configurations that have been used. The intent is for this review to serve as a reference for including mechanical stimulation strategies as part of AC construct culture regimens.
Collapse
Affiliation(s)
- Evelia Y Salinas
- Biomedical Engineering Department, University of California , Irvine, California
| | - Jerry C Hu
- Biomedical Engineering Department, University of California , Irvine, California
| | - Kyriacos Athanasiou
- Biomedical Engineering Department, University of California , Irvine, California
| |
Collapse
|
10
|
Ogura T, Tsuchiya A, Minas T, Mizuno S. Optimization of Extracellular Matrix Synthesis and Accumulation by Human Articular Chondrocytes in 3-Dimensional Construct with Repetitive Hydrostatic Pressure. Cartilage 2018; 9:192-201. [PMID: 29262701 PMCID: PMC5871128 DOI: 10.1177/1947603517743546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective The effects of hydrostatic pressure (HP) on the matrix synthesis by human articular chondrocytes have been reported elsewhere. In order to optimize the production of extracellular matrix, we aimed to clarify the effects of repetitive HP on metabolic function by human articular chondrocytes. Design The human articular chondrocytes were expanded and embedded within a collagen gel/sponge scaffold. We incubated these constructs with and without HP followed by atmospheric pressure (AP) and repeated the second HP followed by AP over 14 days. Genomic, biochemical, and histological evaluation were performed to compare the effects of each regimen on the constructs. Results The gene expressions of collagen type II and aggrecan core protein were significantly upregulated with repetitive HP regimens compared with a single HP or AP by 14 days ( P < 0.01 or 0.05). Matrix metalloptoteinase-13 (MMP-13) in AP was upregulated significantly compared to other HP regimens at day 14 ( P < 0.01). No significant difference was observed in tissue inhibitor of metalloproteinases-II. Immunohistology demonstrated that application of HP (both repetitive and single) promoted the accumulation of specific extracellular matrix and reduced a MMP-13. A single regimen of HP followed by AP significantly increased the amount of sulfated glycosaminoglycan than that of the AP, whereas repetitive HP remained similar level of that of the AP. Conclusions Repetitive HP had a greater effect on anabolic activity by chondrocytes than a single HP regimen, which will be advantageous for producing a matrix-rich cell construct.
Collapse
Affiliation(s)
- Takahiro Ogura
- Department of Orthopedic Surgery,
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Funabashi Orthopaedic Hospital Sports
Medicine Center, Funabashi, Chiba, Japan
| | - Akihiro Tsuchiya
- Funabashi Orthopaedic Hospital Sports
Medicine Center, Funabashi, Chiba, Japan
| | - Tom Minas
- Department of Orthopedic Surgery,
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuichi Mizuno
- Department of Orthopedic Surgery,
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Shuichi Mizuno, Orthopedic Surgery, Brigham
and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA
02115, USA.
| |
Collapse
|
11
|
Zvicer J, Obradovic B. Bioreactors with hydrostatic pressures imitating physiological environments in intervertebral discs. J Tissue Eng Regen Med 2017; 12:529-545. [PMID: 28763577 DOI: 10.1002/term.2533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 06/27/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Intervertebral discs are normally exposed to a variety of loads and stresses but hydrostatic pressure (HP) could be the main biosignal for chondrogenic cell differentiation and maintenance of this tissue. Although there are simple approaches to intermittently expose cell cultures to HP in separate material testing devices, utilization of biomimetic bioreactors aiming to provide in vitro conditions mimicking those found in vivo, attracts special attention. However, design of such bioreactors is complex due to the requirement of high HP magnitudes (up to 3 MPa) applied in different regimes mimicking pressures arising in intervertebral disc during normal daily activities. Furthermore, efficient mass transfer has to be facilitated to cells within 3D scaffolds, and the engineering challenges include avoidance or removal of gas bubbles in the culture medium before pressurization as well as selection of appropriate, biocompatible construction materials and maintenance of sterility during cultivation. Here, we review approaches to induce HP in 2D and 3D cell cultures categorized into 5 groups: (I) discontinuous systems with direct pressurization of the cultivation medium by a piston, (II) discontinuous systems with indirect pressurization by a compression fluid, (III) continuous systems with direct pressurization of the cultivation medium, static culture, (IV) continuous systems with culture perfusion, and (V) systems applying HP in conjunction with other physical signals. Although the complexity is increasing as additional features are added to the systems, the need to understand HP effects on cells and tissues in a physiologically relevant, yet precisely controlled, environment together with current technological advancements are leading towards innovative bioreactor solutions.
Collapse
Affiliation(s)
- Jovana Zvicer
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Bojana Obradovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:399-411. [PMID: 28463576 DOI: 10.1089/ten.teb.2016.0427] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
Collapse
Affiliation(s)
- Ke Li
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lulu Qiu
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lilan Gao
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Xizheng Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| |
Collapse
|