1
|
Lapteva YS, Vologzhannikova AA, Sokolov AS, Ismailov RG, Uversky VN, Permyakov SE. In Vitro N-Terminal Acetylation of Bacterially Expressed Parvalbumins by N-Terminal Acetyltransferases from Escherichia coli. Appl Biochem Biotechnol 2020; 193:1365-1378. [PMID: 32394317 DOI: 10.1007/s12010-020-03324-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Most eukaryotic proteins are N-terminally acetylated (Nt-acetylated) by specific N-terminal acetyltransferases (NATs). Although this co-/post-translational protein modification may affect different aspects of protein functioning, it is typically neglected in studies of bacterially expressed eukaryotic proteins, lacking this modification. To overcome this limitation of bacterial expression, we have probed the efficiency of recombinant Escherichia coli NATs (RimI, RimJ, and RimL) with regard to in vitro Nt-acetylation of several parvalbumins (PAs) expressed in E. coli. PA is a calcium-binding protein of vertebrates, which is sensitive to Nt-acetylation. Our analyses revealed that only metal-free PAs were prone to Nt-acetylation (up to 100%), whereas Ca2+ binding abolished this modification, thereby indicating that Ca2+-induced structural stabilization of PAs impedes their Nt-acetylation. RimJ and RimL were active towards all PAs with N-terminal serine. Their activity towards PAs beginning with alanine was PA-specific, suggesting the importance of the subsequent residues. RimI showed the least activity regardless of the PA studied. Overall, NATs from E. coli are suited for post-translational Nt-acetylation of bacterially expressed eukaryotic proteins with decreased structural stability.
Collapse
Affiliation(s)
- Yulia S Lapteva
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Alisa A Vologzhannikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Andrey S Sokolov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Ramis G Ismailov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia. .,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
2
|
Hui CY, Guo Y, Zhang W, Huang XQ. Rapid monitoring of the target protein expression with a fluorescent signal based on a dicistronic construct in Escherichia coli. AMB Express 2018; 8:81. [PMID: 29785487 PMCID: PMC5962521 DOI: 10.1186/s13568-018-0612-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/12/2018] [Indexed: 01/02/2023] Open
Abstract
Real-time quantification of recombinant proteins is important in studies on fermentation engineering, cell engineering, etc. Measurement of the expression level of heterologous proteins in bacterial fermentation broth has traditionally relied on time-consuming and labor-intensive procedures, such as polyacrylamide gel electrophoresis, immunoblot analysis, and biological activity assays. We describe a simple, fast, and high sensitive assay for detecting heterologous proteins production in bacteria either at the overall level (fluorescence spectrophotometry) or at the individual level (fluorescence microscopic image) in this study. Based on a dicistronic model, the translation of target gene in the upstream open reading frame (ORF) was coupled with the synthesis of the mCherry reporter in the downstream ORF in E. coli cells, and subsequently this demonstrated a positive correlation between the expression of target gene and mCherry. Although a time lag exists between the expression of target protein and mCherry reporter, the method described here allows facile monitoring of dynamic changes in target protein expression, relying on indirect determination of the fluorescence intensity of mCherry during fermentation in real-time models. Additionally, the performance of a single bacterial cell factory could be checked under the fluorescence microscope field.
Collapse
|
3
|
Wang M, Huang M, Zhang J, Ma Y, Li S, Wang J. A novel secretion and online-cleavage strategy for production of cecropin A in Escherichia coli. Sci Rep 2017; 7:7368. [PMID: 28779147 PMCID: PMC5544755 DOI: 10.1038/s41598-017-07411-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides, promising antibiotic candidates, are attracting increasing research attention. Current methods for production of antimicrobial peptides are chemical synthesis, intracellular fusion expression, or direct separation and purification from natural sources. However, all these methods are costly, operation-complicated and low efficiency. Here, we report a new strategy for extracellular secretion and online-cleavage of antimicrobial peptides on the surface of Escherichia coli, which is cost-effective, simple and does not require complex procedures like cell disruption and protein purification. Analysis by transmission electron microscopy and semi-denaturing detergent agarose gel electrophoresis indicated that fusion proteins contain cecropin A peptides can successfully be secreted and form extracellular amyloid aggregates at the surface of Escherichia coli on the basis of E. coli curli secretion system and amyloid characteristics of sup35NM. These amyloid aggregates can be easily collected by simple centrifugation and high-purity cecropin A peptide with the same antimicrobial activity as commercial peptide by chemical synthesis was released by efficient self-cleavage of Mxe GyrA intein. Here, we established a novel expression strategy for the production of antimicrobial peptides, which dramatically reduces the cost and simplifies purification procedures and gives new insights into producing antimicrobial and other commercially-viable peptides.
Collapse
Affiliation(s)
- Meng Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Minhua Huang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Junjie Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|