1
|
Yao LL, Xue B, Ye YF, Wang ZX, Li YY, Zheng BFC, Ju SY, Wang YJ. Structure-Guided Engineering of Carbonyl Reductase LbCR to Simultaneously Enhance Catalytic Activity and Thermostability toward Bulky Ketones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10470-10481. [PMID: 40257260 DOI: 10.1021/acs.jafc.5c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
(S)-2-Chloro-1-(2,4-dichlorophenyl)ethanol ((S)-TCPE) is an important building block for the synthesis of antifungal drug luliconazole. Herein, a carbonyl reductase (CR) from Levilactobacillus brevis (LbCR) was identified for synthesis of (S)-TCPE. Through comprehensive Ala scanning and site-saturated mutagenesis (SSM) targeting the residues surrounding the substrate-binding pocket, the "best" variant LbCRM4 (N96V/E145A/A202L/M206A) was developed, which displays a 26.0-fold increase in catalytic activity, 83.5-fold enhancement in half-life (t1/2) at 40 °C (101.4 h), excellent enantioselectivity (>99.9% e.e.), and broad substrate scope. Compared to the wild-type (WT) LbCR, catalytic efficiency (kcat/KM) of LbCRM4 was increased by 28.0 folds. Furthermore, a high concentration of TCAP (400 g/L) can be transformed (99.9% conversion) within 7 h by using LbCRM4 and an isopropanol/alcohol dehydrogenase/NADPH cofactor regeneration system, giving (S)-TCPE in >99.9% e.e., which is the highest recorded space-time yield (STY, 1288.9 g/L/day) to date. Molecular dynamics (MD) simulations and dynamic cross-correlation matrix analysis elucidated the substantial catalytic performance improvement of LbCRM4. Together, the development of LbCRM4 not only overcomes the trade-offs between catalytic activity and thermostability but also affords an efficient biocatalytic approach for the synthesis of (S)-TCPE featuring a record STY, laying a solid foundation for industrial manufacturing of luliconazole and other active pharmaceutical intermediates.
Collapse
Affiliation(s)
- Li Li Yao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| | - Bin Xue
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| | - Yuan-Fan Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| | - Zhi-Xiu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| | - Yang-Yang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| | - Bei-Feng-Chu Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| | - Shu-Yun Ju
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| | - Ya-Jun Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
- Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Deqing, Hangzhou, Zhejiang 313200, China
- Key Laboratory for Green Pharmaceutical Technology and Equipment (Zhejiang University of Technology) of Ministry of Education, Deqing, Hangzhou, Zhejiang 313200, China
| |
Collapse
|
2
|
Wu Z, Li P, Chen Y, Chen X, Feng Y, Guo Z, Zhu D, Yong Y, Chen H. Rational Design for Enhancing Cellobiose Dehydrogenase Activity and Its Synergistic Role in Straw Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24620-24631. [PMID: 39468403 DOI: 10.1021/acs.jafc.4c05991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Addressing the demand for efficient biological degradation of straw, this study employed rational design coupled with structural biology and enzyme engineering techniques to enhance the catalytic activity of cellobiose dehydrogenase (PsCDH, CDH form Pycnoporus sanguineus). By predicting and modifying the active site and key amino acids of PsCDH, several CDH immobilized enzyme preparations with higher catalytic activities were successfully obtained. The excellent mutant T1 (C286Y/A461H/F464R) exhibited a 2.7-fold increase in enzyme activity compared to the wild type. Simulated calculations indicated that the enhancement of catalytic activity was primarily due to the formation of additional intermolecular interactions between CDH and the substrate, as well as the enlargement of the substrate pocket to reduce steric hindrance effects. Additionally, molecular dynamics simulation analysis revealed a potential correlation between structural stability and enzyme activity. When PsCDH was added to a multienzyme synergistic straw degradation system, the cellulose degradation rate increased by 1.84-fold. Moreover, mutant T1 further increased the degradation of lignocellulose in the mixed system. This study provides efficient enzyme sources and modification strategies for the high-efficiency biological conversion of straw and unconventional feedstock degradation, thereby possessing significant academic value and application prospects.
Collapse
Affiliation(s)
- Zhengfen Wu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Pengfei Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xihua Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
3
|
Zhang L, Sun Z, Xu G, Ni Y. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review. Int J Biol Macromol 2024; 270:132238. [PMID: 38729463 DOI: 10.1016/j.ijbiomac.2024.132238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Alcohol dehydrogenases (ADHs) mediated biocatalytic asymmetric reduction of ketones have been widely applied in the synthesis of optically active secondary alcohols with highly reactive hydroxyl groups ligated to the stereogenic carbon and divided into (R)- and (S)-configurations. Stereocomplementary ADHs could be applied in the synthesis of both enantiomers and are increasingly accepted as the "first of choice" in green chemistry due to the high atomic economy, low environmental factor, 100 % theoretical yield, and high environmentally friendliness. Due to the equal importance of complementary alcohols, development of stereocomplementary ADHs draws increasing attention. This review is committed to summarize recent advance in discovery of naturally evolved and tailor-made stereocomplementary ADHs, unveil the molecular mechanism of stereoselective catalysis in views of classification and functional basis, and provide guidance for further engineering the stereoselectivity of ADHs for the industrial biosynthesis of chiral secondary alcohol of industrial relevance.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zewen Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
4
|
Niu J, Ma B, Shen J, Chi H, Zhou H, Lu Z, Lu F, Zhu P. Structure-Guided Steric Hindrance Engineering of Devosia Strain A6-243 Quinone-Dependent Dehydrogenase to Enhance Its Catalytic Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:549-558. [PMID: 38153089 DOI: 10.1021/acs.jafc.3c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Deoxynivalenol (DON), the most widely distributed mycotoxin worldwide, causes severe health risks for humans and animals. Quinone-dependent dehydrogenase derived from Devosia strain A6-243 (DADH) can degrade DON into less toxic 3-keto-DON and then aldo-keto reductase AKR13B3 can reduce 3-keto-DON into relatively nontoxic 3-epi-DON. However, the poor catalytic efficiency of DADH made it unsuitable for practical applications, and it has become the rate-limiting step of the two-step enzymatic cascade catalysis. Here, structure-guided steric hindrance engineering was employed to enhance the catalytic efficiency of DADH. After the steric hindrance engineering, the best mutant, V429G/N431V/T432V/L434V/F537A (M5-1), showed an 18.17-fold increase in specific activity and an 11.04-fold increase in catalytic efficiency (kcat/Km) compared with that of wild-type DADH. Structure-based computational analysis provided information on the increased catalytic efficiency in the directions that attenuated steric hindrance, which was attributed to the reshaped substrate-binding pocket with an expanded catalytic binding cavity and a favorable attack distance. Tunnel analysis suggested that reshaping the active cavity by mutation might alter the shape and size of the enzyme tunnels or form one new enzyme tunnel, which might contribute to the improved catalytic efficiency of M5-1. These findings provide a promising strategy to enhance the catalytic efficiency by steric hindrance engineering.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Hu BC, Li MR, Li YY, Yuan XS, Hu YY, Xiao FG. Engineering a BsBDHA substrate-binding pocket entrance for the improvement in catalytic performance toward (R)-phenyl-1,2-ethanediol based on the computer-aided design. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Pei R, Fu X, Tian L, Zhou SF, Jiang W. Enhancing the biocatalytic synthesis of chiral drug intermediate by rational design an aldo-keto reductase from Bacillus megaterium YC4-R4. Enzyme Microb Technol 2022; 160:110074. [PMID: 35709659 DOI: 10.1016/j.enzmictec.2022.110074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022]
Abstract
In recent years, with the increasing number of patients with depression, the efficient synthesis of the first-line antidepressant drug duloxetine intermediate (S-N,N-dimethyl-3-hydroxy-3-(2-thienyl)-1-propanamine, S-DHTP) has attracted great attention. The wild-type AKR3-2-9 from Bacillus megaterium YC4-R4 exhibits high application potential of catalyzing N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine (DKTP) to prepare S-DHTP, but there is still much room for improvement. In this work, rational design was carried out to enhance the catalytic potential of AKR3-2-9. Notably, compared to the wild-type AKR3-2-9, three mutants (Ile189Val, Asn256Asp, and Ile189Val + Asn256Asp) were obtained, and their catalytic efficiencies were increased by 1.3 times, 2.3 times, and 1.31 times, respectively. Besides, the thermal stability and organic solvent resistance were improved. More importantly, when the concentration of the substrate DKTP was 0.5 g/L, the catalytic yields of Ile189Val, Asn256Asp and Ile189Val + Asn256Asp were increased by 1.45 times, 1.86 times, and 2.05 times, respectively. Besides, the corresponding optical purities of the three mutants were 92.7 %, 94.3 % and 93.8 %. The above results indicated that the rational design of the AKR of Bacillus megaterium YC4-R4 enhanced its potential for biocatalytic preparation of S-DHTP.
Collapse
Affiliation(s)
- Rui Pei
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoli Fu
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China
| | - Libing Tian
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China.
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China.
| |
Collapse
|
7
|
Enhancing Acetophenone Tolerance of Anti-Prelog Short-Chain Dehydrogenase/Reductase EbSDR8 Using a Whole-Cell Catalyst by Directed Evolution. Catalysts 2022. [DOI: 10.3390/catal12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The short-chain dehydrogenase/reductase (SDR) from Empedobacter brevis ZJUY-1401 (EbSDR8, GenBank: ALZ42979.1) is a promising biocatalyst for the reduction of acetophenone to (R)-1-phenylethanol, but its industrial application is restricted by its insufficient tolerance to acetophenone. In this paper, we developed a chromogenic reaction-based high-throughput screening method and employed directed evolution to enhance the acetophenone tolerance of EbSDR8. The resulting variant, M190V, showed 74.8% improvement over the wild-type in specific activity when catalyzing the reduction of 200 mM acetophenone. Kinetic analysis revealed a 70% enhancement in its catalytic efficiency (kcat/Km). Molecular docking was conducted to reveal the possible mechanism behind the improved acetophenone tolerance, and the result implied that the M190V mutation is conducive to the binding and release of coenzyme. Aside from the improved catalytic performance when dealing with a high concentration of acetophenone, other features of M190V, such as a broad pH range (6.0 to 10.5), low optimal cosubstrate concentration (1% isopropanol), and a temperature optimum close to that of E. coli cells (35 °C), also contribute to its practical application as a whole-cell catalyst. In this study, we first designed a directed evolution means to engineer the enzyme and obtained the positive variant which has a high activity under high concentrations of acetophenone. After that, we optimized the catalytic performance of the variant to adapt to industrial applications.
Collapse
|
8
|
Luo X, Wang Y, Zheng W, Sun X, Hu G, Yin L, Zhang Y, Yin F, Fu Y. Simultaneous improvement of the thermostability and activity of lactic dehydrogenase from Lactobacillus rossiae through rational design. RSC Adv 2022; 12:33251-33259. [PMID: 36425200 PMCID: PMC9677063 DOI: 10.1039/d2ra05599f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
d-Phenyllactic acid, is a versatile organic acid with wide application prospects in the food, pharmaceutical and material industries. Wild-type lactate dehydrogenase LrLDH from Lactobacillus rossiae exhibits a high catalytic performance in the production of d-phenyllactic acid from phenylpyruvic acid or sodium phenylpyruvate, but its industrial application is hampered by poor thermostability. Here, computer aided rational design was applied to improve the thermostability of LrLDH. By using HotSpot Wizard 3.0, five hotspot residues (N218, L237, T247, D249 and S301) were identified, after which site-saturation mutagenesis and combined mutagenesis were performed. The double mutant D249A/T247I was screen out as the best variant, with optimum temperature, t1/2, and T1050 that were 12 °C, 17.96 min and 19 °C higher than that of wild-type LrLDH, respectively. At the same time, the kcat/Km of D249A/T247I was 1.47 s−1 mM−1, which was 3.4 times higher than that of the wild-type enzyme. Thus rational design was successfully applied to simultaneously improve the thermostability and catalytic activity of LrLDH to a significant extent. The results of molecular dynamics simulations and molecular structure analysis could explain the mechanisms for the improved performance of the double mutant. This study shows that computer-aided rational design can greatly improve the thermostability of d-lactate dehydrogenase, offering a reference for the modification of other enzymes. The d-LDH was engineered using computationally-assisted rational mutagenesis. The two mutants D249A and D249A/T247I showed significantly enhanced thermostability and catalytic activity to sodium phenylpyruvate compared with the wild-type enzyme.![]()
Collapse
Affiliation(s)
- Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| | - Yifeng Wang
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| | - Xiaolong Sun
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| | - Gaowei Hu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| | - Longfei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| | - Yingying Zhang
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| | - Fengwei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, Zhejiang, People's Republic of China
| |
Collapse
|
9
|
Jiang W, Fu X, Wu W. Gene mining, codon optimization and analysis of binding mechanism of an aldo-keto reductase with high activity, better substrate specificity and excellent solvent tolerance. PLoS One 2021; 16:e0260787. [PMID: 34855894 PMCID: PMC8638942 DOI: 10.1371/journal.pone.0260787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
The biosynthesis of chiral alcohols has important value and high attention. Aldo–keto reductases (AKRs) mediated reduction of prochiral carbonyl compounds is an interesting way of synthesizing single enantiomers of chiral alcohols due to the high enantio-, chemo- and regioselectivity of the enzymes. However, relatively little research has been done on characterization and apply of AKRs to asymmetric synthesis of chiral alcohols. In this study, the AKR from Candida tropicalis MYA-3404 (C. tropicalis MYA-3404), was mined and characterized. The AKR shown wider optimum temperature and pH. The AKR exhibited varying degrees of catalytic activity for different substrates, suggesting that the AKR can catalyze a variety of substrates. It is worth mentioning that the AKR could catalytic reduction of keto compounds with benzene rings, such as cetophenone and phenoxyacetone. The AKR exhibited activity on N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine (DKTP), a key intermediate for biosynthesis of the antidepressant drug duloxetine. Besides, the AKR still has high activity whether in a reaction system containing 10%-30% V/V organic solvent. What’s more, the AKR showed the strongest stability in six common organic solvents, DMSO, acetonitrile, ethyl acetate, isopropanol, ethanol, and methanol. And, it retains more that 70% enzyme activity after 6 hours, suggesting that the AKR has strong solvent tolerance. Furthermore, the protein sequences of the AKR and its homology were compared, and a 3D model of the AKR docking with coenzyme NADPH were constructed. And the important catalytic and binding sites were identified to explore the binding mechanism of the enzyme and its coenzyme. These properties, predominant organic solvents resistance and extensive substrate spectrum, of the AKR making it has potential applications in the pharmaceutical field.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- * E-mail: ,
| | - Xiaoli Fu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Weiliang Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
10
|
Li A, Ting W, Yang K, Zhang X, Yin D, Qin Y, Zhang L. Engineering a Carbonyl Reductase as a Potential Tool for the Synthesis of Chiral α‐Tetralinols. ChemCatChem 2021. [DOI: 10.1002/cctc.202100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aipeng Li
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an P. R. China
| | - Wang Ting
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an P. R. China
| | - Ke Yang
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an P. R. China
| | - Xuanshuo Zhang
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an P. R. China
| | - Dongming Yin
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an P. R. China
| | - Yong Qin
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an P. R. China
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences 030001 Taiyuan P. R. China
| | - Lianbing Zhang
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an P. R. China
| |
Collapse
|
11
|
Wang T, Yang K, Tian Q, Han R, Zhang X, Li A, Zhang L. Acetoacetyl-CoA reductase PhaB as an excellent anti-Prelog biocatalyst for the synthesis of chiral β-hydroxyl ester and the molecular basis of its catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Qiu S, Xu SY, Li SF, Meng KM, Cheng F, Wang YJ, Zheng YG. Fluorescence-based screening for engineered aldo-keto reductase KmAKR with improved catalytic performance and extended substrate scope. Biotechnol J 2021; 16:e2100130. [PMID: 34125995 DOI: 10.1002/biot.202100130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aldo-keto reductases-catalyzed transformations of ketones to chiral alcohols have become an established biocatalytic process step in the pharmaceutical industry. Previously, we have discovered an aldo-keto reductase (AKR) from Kluyveromyces marxianus that is active to the aliphatic tert-butyl 6-substituted (5R/S)-hydroxy-3-oxohexanoates, but it is inactive to aromatic ketones. In order to acquire an excellent KmAKRmutant for ensuring the simultaneous improvement of activity-thermostability toward tert-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1) and broadening the universal application prospects toward more substrates covering both aliphatic and aromatic ketones, a fluorescence-based high-throughput (HT) screening technique was established. MAIN METHODS AND MAJOR RESULTS The directed evolution of KmAKR variant M5 (KmAKR-W297H/Y296W/K29H/Y28A/T63M) produced the "best" variant M5-Q213A/T23V. It exhibited enhanced activity-thermostability toward (5R)-1, improved activity toward all 18 test substrates and strict R-stereoselectivity toward 10 substrates in comparison to M5. The enhancement of enzymatic activity and the extension of substrate scope covering aromatic ketones are proposed to be largely attributed to pushing the binding pocket of M5-Q213A/T23V to the enzyme surface, decreasing the steric hindrance at the entrance and enhancing the flexibility of loops surrounding the active center. In addition, combined with 0.94 g dry cell weight (DCW) L-1 glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration, 2.81 g DCW L-1 M5-Q213A/T23V completely converted (5R)-1 of up to 450 g L-1 at 120 g g-1 substrates/catalysts (S/C), yielding the corresponding optically pure tert-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2, > 99.5% d.e.p ) with a space-time yield (STY) of 1.08 kg L-1 day-1 . CONCLUSIONS A fluorescence-based HT screening system was developed to tailor KmAKR's activity, thermostability and substrate scope. The "best" variant M5-Q213A/T23V holds great potential application for the synthesis of aliphatic/aromatic R-configuration alcohols.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kang-Ming Meng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
13
|
Li A, Wang T, Tian Q, Yang X, Yin D, Qin Y, Zhang L. Single-Point Mutant Inverts the Stereoselectivity of a Carbonyl Reductase toward β-Ketoesters with Enhanced Activity. Chemistry 2021; 27:6283-6294. [PMID: 33475219 DOI: 10.1002/chem.202005195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Indexed: 01/06/2023]
Abstract
Enzyme stereoselectivity control is still a major challenge. To gain insight into the molecular basis of enzyme stereo-recognition and expand the source of antiPrelog carbonyl reductase toward β-ketoesters, rational enzyme design aiming at stereoselectivity inversion was performed. The designed variant Q139G switched the enzyme stereoselectivity toward β-ketoesters from Prelog to antiPrelog, providing corresponding alcohols in high enantiomeric purity (89.1-99.1 % ee). More importantly, the well-known trade-off between stereoselectivity and activity was not found. Q139G exhibited higher catalytic activity than the wildtype enzyme, the enhancement of the catalytic efficiency (kcat /Km ) varied from 1.1- to 27.1-fold. Interestingly, the mutant Q139G did not lead to reversed stereoselectivity toward aromatic ketones. Analysis of enzyme-substrate complexes showed that the structural flexibility of β-ketoesters and a newly formed cave together facilitated the formation of the antiPrelog-preferred conformation. In contrast, the relatively large and rigid structure of the aromatic ketones prevents them from forming the antiPrelog-preferred conformation.
Collapse
Affiliation(s)
- Aipeng Li
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Ting Wang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Dongming Yin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Yong Qin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| |
Collapse
|
14
|
Cheng F, Chen Y, Qiu S, Zhai QY, Liu HT, Li SF, Weng CY, Wang YJ, Zheng YG. Controlling Stereopreferences of Carbonyl Reductases for Enantioselective Synthesis of Atorvastatin Precursor. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiu-Yao Zhai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
15
|
Zhang D, Zhu X, Hu D, Wen Z, Zhang C, Wu M. Improvement in the catalytic performance of a phenylpyruvate reductase from Lactobacillus plantarum by site-directed and saturation mutagenesis based on the computer-aided design. 3 Biotech 2021; 11:69. [PMID: 33489686 DOI: 10.1007/s13205-020-02633-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
To enhance the specific activity and catalytic efficiency (k cat/K m) of an NADH-dependent LpPPR, its directed modification was performed based on the computer-aided design using molecular docking simulation and multiple sequence alignment. Firstly, five single-site variants of an LpPPR-encoding gene (lpppr) were amplified and expressed in E. coli BL21 (DE3). The asymmetric reduction of 20 mM phenylpyruvic acid (PPA) was carried out using 50 mg/mL E. coli/lpppr R53Q or /lpppr A79V whole wet cells at 37 °C for 20 min, giving d-phenyllactic acid (PLA) with 41.1 or 44.3% yield, being 1.17- or 1.26-fold that by E. coli/lpppr. Secondly, double-site variants were obtained by saturation mutagenesis of Ala79 in LpPPRR53Q. Among all tested E. coli transformants, E. coli/lpppr R53Q/A79V exhibited the highest d-PLA yield of 85.3%. The specific activity and k cat/K m of the purified LpPPRR53Q/A79V increased to 67.5 U/mg and 169.8 mM-1 s-1, which were 3.0- and 13.2-fold those of LpPPR, respectively. Finally, the catalytic mechanism analysis of LpPPRR53Q/A79V by molecular docking simulation indicated that the replacement of Arg53 in LpPPR with Gln expanded its substrate-binding pocket, while that Ala79 with Val formed an additional π-sigma interaction with phenyl group of PPA. SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s13205-020-02633-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiuxiu Zhu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Chen Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 China
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
16
|
Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols. Bioorg Chem 2020; 103:104228. [DOI: 10.1016/j.bioorg.2020.104228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
|
17
|
Zhou Y, Ding Y, Gao W, Wang J, Liu X, Xian M, Feng X, Zhao G. Biosynthesis of acetylacetone inspired by its biodegradation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:88. [PMID: 32454892 PMCID: PMC7226712 DOI: 10.1186/s13068-020-01725-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Acetylacetone is a commercially bulk chemical with diverse applications. However, the traditional manufacturing methods suffer from many drawbacks such as multiple steps, harsh conditions, low yield, and environmental problems, which hamper further applications of petrochemical-based acetylacetone. Compared to conventional chemical methods, biosynthetic methods possess advantages such as being eco-friendly, and having mild conditions, high selectivity and low potential costs. It is urgent to develop biosynthetic route for acetylacetone to avoid the present problems. RESULTS The biosynthetic pathway of acetylacetone was constructed by reversing its biodegradation route, and the acetylacetone was successfully produced by engineered Escherichia coli (E. coli) by overexpression of acetylacetone-cleaving enzyme (Dke1) from Acinetobacter johnsonii. Several promising amino acid residues were selected for enzyme improvement based on sequence alignment and structure analysis, and the acetylacetone production was improved by site-directed mutagenesis of Dke1. The double-mutant (K15Q/A60D) strain presented the highest acetylacetone-producing capacity which is 3.6-fold higher than that of the wild-type protein. Finally, the strain accumulated 556.3 ± 15.2 mg/L acetylacetone in fed-batch fermentation under anaerobic conditions. CONCLUSIONS This study presents the first intuitive biosynthetic pathway for acetylacetone inspired by its biodegradation, and shows the potential for large-scale production.
Collapse
Affiliation(s)
- Yifei Zhou
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Wenjie Gao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Jichao Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Xiutao Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| |
Collapse
|
18
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
19
|
Shen W, Chen Y, Qiu S, Wang DN, Wang YJ, Zheng YG. Semi-rational engineering of a Kluyveromyces lactis aldo-keto reductase KlAKR for improved catalytic efficiency towards t-butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate. Enzyme Microb Technol 2020; 132:109413. [DOI: 10.1016/j.enzmictec.2019.109413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
|
20
|
Li A, Li X, Pang W, Tian Q, Wang T, Zhang L. Fine-tuning of the substrate binding mode to enhance the catalytic efficiency of an ortho-haloacetophenone-specific carbonyl reductase. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02335f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fine-tuning of the substrate binding mode was successfully applied for enhancing the catalytic efficiency of an ortho-haloacetophenone-specific carbonyl reductase.
Collapse
Affiliation(s)
- Aipeng Li
- Research & Development Institute in Shenzhen
- Northwestern Polytechnical University
- 518057 Shenzhen
- China
- School of Life Sciences
| | - Xue Li
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Wei Pang
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Qing Tian
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Ting Wang
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Lianbing Zhang
- Research & Development Institute in Shenzhen
- Northwestern Polytechnical University
- 518057 Shenzhen
- China
- School of Life Sciences
| |
Collapse
|
21
|
Significantly enhancing the biocatalytic synthesis of chiral alcohols by semi-rationally engineering an anti-Prelog carbonyl reductase from Acetobacter sp. CCTCC M209061. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chen N, Chen Y, Tang Y, Zhao Q, Liu C, Niu W, Huang P, Yu F, Yang Z, Ding G. Efficient synthesis of (S)-2-chloro-1-(2, 4-dichlorophenyl) ethanol using a tetrad mutant alcohol dehydrogenase from Lactobacillus kefir. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Yu H, Qiu S, Cheng F, Cheng YN, Wang YJ, Zheng YG. Improving the catalytic efficiency of aldo-keto reductase KmAKR towards t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate via semi-rational design. Bioorg Chem 2019; 90:103018. [DOI: 10.1016/j.bioorg.2019.103018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023]
|
24
|
Li A, Yuchi Q, Li X, Pang W, Li B, Xue F, Zhang L. Discovery of a novel ortho-haloacetophenones-specific carbonyl reductase from Bacillus aryabhattai and insight into the molecular basis for its catalytic performance. Int J Biol Macromol 2019; 138:781-790. [PMID: 31351953 DOI: 10.1016/j.ijbiomac.2019.07.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
To exploit robust biocatalysts for chiral 1-(2-halophenyl)ethanols synthesis, an ortho-haloacetophenones-specific carbonyl reductase (BaSDR1) gene from Bacillus aryabhattai was cloned and expressed in Escherichia coli. The impressive properties regarding BaSDR1 application include preference for NADH as coenzyme, noticeable tolerance against high cosubstrate concentration, and remarkable catalytic performance over a broad pH range from 5.0 to 10.0. The optimal temperature was 35 °C, with a half-life of 3.1 h at 35 °C and 0.75 h at 45 °C, respectively. Notably, BaSDR1 displayed excellent catalytic performance toward various ortho-haloacetophenones, providing chiral 1-(2-halophenyl)ethanols with 99% ee for all the substrates tested. Most importantly, the docking results indicated that the enzyme-substrate interactions and the steric hindrance of halogen atoms act in a push-pull manner in regulating enzyme catalytic ability. These results provide valuable clues for the structure-function relationships of BaSDR1 and the role of halogen groups in catalytic performance, and offer important reference for protein engineering and mining of functional compounds.
Collapse
Affiliation(s)
- Aipeng Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057 Shenzhen, China
| | - Qingxiao Yuchi
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Xue Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Wei Pang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Bin Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Feng Xue
- School of Marine and Bioengineering, Yancheng Institute of Technology, 224051 Yancheng, China.
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China.
| |
Collapse
|
25
|
t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate synthesis via asymmetric reduction by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Rational design to improve activity of the Est3563 esterase from Acinetobacter sp. LMB-5. Enzyme Microb Technol 2019; 131:109331. [PMID: 31615665 DOI: 10.1016/j.enzmictec.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Acinetobacter sp. strain LMB-5 can produce a kind of esterase degrading phthalate esters. However, low activity of Est3563 esterase limited its large-scale application. In this study, computer-aided simulation mutagenesis was used to improve the esterase activity with a tightened screening library and enlarged success rate. Two positive mutants, P218R and A242R, were obtained with 2.5 and 2.1 folds higher than the WT Est3563 esterase, with 11.96 ± 0.45 U·mg-1 and 9.90 ± 0.52 U·mg-1, respectively. With the help of bioinformatics analysis and three-dimensional printing technology, it was found that the mutations could increase the 240-280 residues swing distance and make them deviate from the catalytic pocket. The instability and deviation of these residues on the lid-like structure of the esterase could deteriorate the seal of the binding pocket and expose the active site. Thus, the catalytic efficiency of the mutants became higher. This result demonstrates that the instability and deviation of the lid-like structure could expand the binding pocket of the esterase and enhance the esterase activity.
Collapse
|
27
|
Biocatalyzed Synthesis of Statins: A Sustainable Strategy for the Preparation of Valuable Drugs. Catalysts 2019. [DOI: 10.3390/catal9030260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are the largest selling class of drugs prescribed for the pharmacological treatment of hypercholesterolemia and dyslipidaemia. Statins also possess other therapeutic effects, called pleiotropic, because the blockade of the conversion of HMG-CoA to (R)-mevalonate produces a concomitant inhibition of the biosynthesis of numerous isoprenoid metabolites (e.g., geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP)). Thus, the prenylation of several cell signalling proteins (small GTPase family members: Ras, Rac, and Rho) is hampered, so that these molecular switches, controlling multiple pathways and cell functions (maintenance of cell shape, motility, factor secretion, differentiation, and proliferation) are regulated, leading to beneficial effects in cardiovascular health, regulation of the immune system, anti-inflammatory and immunosuppressive properties, prevention and treatment of sepsis, treatment of autoimmune diseases, osteoporosis, kidney and neurological disorders, or even in cancer therapy. Thus, there is a growing interest in developing more sustainable protocols for preparation of statins, and the introduction of biocatalyzed steps into the synthetic pathways is highly advantageous—synthetic routes are conducted under mild reaction conditions, at ambient temperature, and can use water as a reaction medium in many cases. Furthermore, their high selectivity avoids the need for functional group activation and protection/deprotection steps usually required in traditional organic synthesis. Therefore, biocatalysis provides shorter processes, produces less waste, and reduces manufacturing costs and environmental impact. In this review, we will comment on the pleiotropic effects of statins and will illustrate some biotransformations nowadays implemented for statin synthesis.
Collapse
|
28
|
Wang DC, Li H, Xia SN, Xue YP, Zheng YG. Engineering of a keto acid reductase through reconstructing the substrate binding pocket to improve its activity. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02586j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme–substrate docking-guided point mutation of the substrate-binding pocket to generate mutant L244G/A250G/L245R with superior activity in the synthesis of (R)-2-hydroxy-4-phenylbutyric acid.
Collapse
Affiliation(s)
- Di-Chen Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Heng Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Shu-Ning Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
29
|
Gong XM, Qin Z, Li FL, Zeng BB, Zheng GW, Xu JH. Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03382] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu-Min Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- State Key Laboratory of Bioreactor Engineering and R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Bu-Bing Zeng
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli. Appl Biochem Biotechnol 2018; 187:1143-1157. [DOI: 10.1007/s12010-018-2878-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023]
|
31
|
Li JF, Li XQ, Liu Y, Yuan FJ, Zhang T, Wu MC, Zhang JR. Directed modification of l - Lc LDH1, an l -lactate dehydrogenase from Lactobacillus casei , to improve its specific activity and catalytic efficiency towards phenylpyruvic acid. J Biotechnol 2018; 281:193-198. [DOI: 10.1016/j.jbiotec.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
|
32
|
Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorg Med Chem 2018; 26:1275-1284. [DOI: 10.1016/j.bmc.2017.06.043] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
|
33
|
Wang YJ, Chen XP, Shen W, Liu ZQ, Zheng YG. Chiral diol t -butyl 6-cyano-(3 R ,5 R )-dihydroxylhexanoate synthesis catalyzed by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Rational design of Kluyveromyces marxianus ZJB14056 aldo–keto reductase Km AKR to enhance diastereoselectivity and activity. Enzyme Microb Technol 2017; 107:32-40. [DOI: 10.1016/j.enzmictec.2017.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 11/21/2022]
|
35
|
Wang YJ, Shen W, Luo X, Liu ZQ, Zheng YG. Enhanced diastereoselective synthesis oft-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate by using aldo-keto reductase and glucose dehydrogenase co-producing engineeredEscherichia coli. Biotechnol Prog 2017; 33:1235-1242. [DOI: 10.1002/btpr.2543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/17/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
| | - Wei Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
| | - Xi Luo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
| |
Collapse
|
36
|
Gong XM, Zheng GW, Liu YY, Xu JH. Identification of a Robust Carbonyl Reductase for Diastereoselectively Building syn-3,5-Dihydroxy Hexanoate: a Bulky Side Chain of Atorvastatin. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu-Min Gong
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Gao-Wei Zheng
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - You-Yan Liu
- School
of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
- Guangxi
Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning 530003, Guangxi, P. R. China
| | - Jian-He Xu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
37
|
Wang Z, Zhou S, Zhang S, Zhang S, Zhu F, Jin X, Chen Z, Xu X. Semi-rational engineering of a thermostable aldo-keto reductase from Thermotoga maritima for synthesis of enantiopure ethyl-2-hydroxy-4-phenylbutyrate (EHPB). Sci Rep 2017; 7:4007. [PMID: 28638047 PMCID: PMC5479831 DOI: 10.1038/s41598-017-03947-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/05/2017] [Indexed: 11/29/2022] Open
Abstract
A novel aldo-keto reductase Tm1743 characterized from Thermotoga maritima was explored as an effective biocatalyst in chiral alcohol production. Natural Tm1743 catalyzes asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (EOPB) at high efficiency, but the production of, ethyl (S)-2-hydroxy-4-phenylbutyrate ((S)-EHPB), which is less desirable, is preferred with an enantiomeric excess (ee) value of 76.5%. Thus, altering the enantioselectivity of Tm1743 to obtain the more valuable product (R)-EHPB for angiotensin drug synthesis is highly desired. In this work, we determined the crystal structure of Tm1743 in complex with its cofactor NADP+ at 2.0 Å resolution, and investigated the enantioselectivity of Tm1743 through semi-rational enzyme design. Molecular simulations based on the crystal structure obtained two binding models representing the pro-S and pro-R conformations of EOPB. Saturation mutagenesis studies revealed that Trp21 and Trp86 play important roles in determining the enantioselectivity of Tm1743. The best (R)- and (S)-EHPB preferring Tm1743 mutants, denoted as W21S/W86E and W21L/W118H, were identified; their ee values are 99.4% and 99.6% and the catalytic efficiencies are 0.81 and 0.12 mM-1s-1, respectively. Our work presents an efficient strategy to improve the enantioselectivity of a natural biocatalyst, which will serve as a guide for further exploration of new green catalysts for asymmetric reactions.
Collapse
Affiliation(s)
- Zhiguo Wang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shuo Zhou
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | | | - Sa Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fangmeng Zhu
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang, 322118, China
| | - Xiaolu Jin
- Yosemade Pharmaceutical Co., Ltd., Jinhua, Zhejiang, 321025, China
| | - Zhenming Chen
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xiaoling Xu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
38
|
An NADPH-dependent Lactobacillus composti short-chain dehydrogenase/reductase: characterization and application to (R)-1-phenylethanol synthesis. World J Microbiol Biotechnol 2017. [DOI: 10.1007/s11274-017-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Liu ZQ, Wu L, Zhang XJ, Xue YP, Zheng YG. Directed Evolution of Carbonyl Reductase from Rhodosporidium toruloides and Its Application in Stereoselective Synthesis of tert-Butyl (3R,5S)-6-Chloro-3,5-dihydroxyhexanoate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3721-3729. [PMID: 28425285 DOI: 10.1021/acs.jafc.7b00866] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is a key intermediate of atorvastatin and rosuvastatin synthesis. Carbonyl reductase RtSCR9 from Rhodosporidium toruloides exhibited excellent activity toward tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH). For the activity of RtSCR9 to be improved, random mutagenesis and site-saturation mutagenesis were performed. Three positive mutants were obtained (mut-Gln95Asp, mut-Ile144Lys, and mut-Phe156Gln). These mutants exhibited 1.94-, 3.03-, and 1.61-fold and 1.93-, 3.15-, and 1.97-fold improvement in the specific activity and kcat/Km, respectively. Asymmetric reduction of (S)-CHOH by mut-Ile144Lys coupled with glucose dehydrogenase was conducted. The yield and enantiomeric excess of (3R,5S)-CDHH reached 98 and 99%, respectively, after 8 h bioconversion in a single batch reaction with 1 M (S)-CHOH, and the space-time yield reached 542.83 mmol L-1 h-1 g-1 wet cell weight. This study presents a new carbonyl reductase for efficient synthesis of (3R,5S)-CDHH.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering and ‡Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology , Hangzhou 310014, China
| | - Lin Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering and ‡Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology , Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering and ‡Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology , Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering and ‡Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology , Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering and ‡Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology , Hangzhou 310014, China
| |
Collapse
|
40
|
Zheng YG, Yin HH, Yu DF, Chen X, Tang XL, Zhang XJ, Xue YP, Wang YJ, Liu ZQ. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl Microbiol Biotechnol 2017; 101:987-1001. [PMID: 28074225 DOI: 10.1007/s00253-016-8083-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dao-Fu Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
41
|
Haas J, Häckh M, Justus V, Müller M, Lüdeke S. Addition of a polyhistidine tag alters the regioselectivity of carbonyl reductase S1 from Candida magnoliae. Org Biomol Chem 2017; 15:10256-10264. [DOI: 10.1039/c7ob02666h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recombinant carbonyl reductase shows different regioselectivity with a C-terminal His-tag compared to the N-tagged enzyme toward the same triketide substrate. Highly selective synthesis of reference triketides allowed solving this conundrum.
Collapse
Affiliation(s)
- Julian Haas
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Matthias Häckh
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Viktor Justus
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|
42
|
Li A, Ye L, Yang X, Wang B, Yang C, Gu J, Yu H. Reconstruction of the Catalytic Pocket and Enzyme-Substrate Interactions To Enhance the Catalytic Efficiency of a Short-Chain Dehydrogenase/Reductase. ChemCatChem 2016. [DOI: 10.1002/cctc.201600921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aipeng Li
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; 310027 Hangzhou P.R. China
| | - Xiaohong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Bei Wang
- College of Pharmaceutical Science; Zhejiang University of Technology; 310014 Hangzhou P.R. China
| | - Chengcheng Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Jiali Gu
- College of Life Science, Department of Materials Chemistry; Huzhou University; 313000 Huzhou P.R. China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| |
Collapse
|