1
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
2
|
Kögler LM, Stichel J, Beck-Sickinger AG. Structural investigations of cell-free expressed G protein-coupled receptors. Biol Chem 2020; 401:97-116. [PMID: 31539345 DOI: 10.1515/hsz-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are of great pharmaceutical interest and about 35% of the commercial drugs target these proteins. Still there is huge potential left in finding molecules that target new GPCRs or that modulate GPCRs differentially. For a rational drug design, it is important to understand the structure, binding and activation of the protein of interest. Structural investigations of GPCRs remain challenging, although huge progress has been made in the last 20 years, especially in the generation of crystal structures of GPCRs. This is mostly caused by issues with the expression yield, purity or labeling. Cell-free protein synthesis (CFPS) is an efficient alternative for recombinant expression systems that can potentially address many of these problems. In this article the use of CFPS for structural investigations of GPCRs is reviewed. We compare different CFPS systems, including the cellular basis and reaction configurations, and strategies for an efficient solubilization. Next, we highlight recent advances in the structural investigation of cell-free expressed GPCRs, with special emphasis on the role of photo-crosslinking approaches to investigate ligand binding sites on GPCRs.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
3
|
Impact of bacterial chaperonin GroEL–GroES on bacteriorhodopsin folding and membrane integration. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-0090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Hajek P, Bader A, Helmstetter F, Henke B, Arnold P, Beitz E. Cell-Free and Yeast-Based Production of the Malarial Lactate Transporter, PfFNT, Delivers Comparable Yield and Protein Quality. Front Pharmacol 2019; 10:375. [PMID: 31024323 PMCID: PMC6467934 DOI: 10.3389/fphar.2019.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
Cell-free protein production is an attractive alternative to cell-based expression. Rapid results, small-volume reactions, irrelevance of protein toxicity, flexibility, and openness of the system are strong points in favor of the cell-free system. However, the in vitro situation lacks the cellular quality control machinery comprising e.g., the translocon for inserting membrane proteins into lipid bilayers, and chaperon-assisted protein degradation pathways. Here, we compare yield and protein quality of the lactate transporter, PfFNT, from malaria parasites when produced in Pichia pastoris yeast, or in an Escherichia coli S30-extract-based cell-free system. Besides solubilization and correct folding, PfFNT requires oligomerization into homopentamers. We assessed PfFNT folding/oligomerization and function by transmission electron microscopy imaging, transport assays, and binding of small-molecule inhibitors. For the latter, we used chromatography of the PfFNT-inhibitor complex with dual-wavelength detection, and biolayer interferometry. Our data show, that PfFNT possesses an intrinsic capability for assuming the correct fold, oligomerization pattern, and functionality during in vitro translation. This competence depended on the detergent present in the cell-free reaction. The choice of detergent further affected purification and inhibitor binding. In conclusion, in the presence of a suitable detergent, cell-free systems are very well capable of producing high quality membrane proteins.
Collapse
Affiliation(s)
- Philipp Hajek
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Annika Bader
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Folknand Helmstetter
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Björn Henke
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
5
|
Chi H, Xu B, Liu Z, Wei J, Li S, Ren H, Xu Y, Lu X, Wang X, Wang X, Huang F. Combined thermodynamic and kinetic analysis of GroEL interacting with CXCR4 transmembrane peptides. Biochim Biophys Acta Gen Subj 2018; 1862:1576-1583. [PMID: 29627450 DOI: 10.1016/j.bbagen.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
GroEL along with ATP and its co-chaperonin GroES has been demonstrated to significantly enhance the folding of newly translated G-protein-coupled receptors (GPCRs). This work extends the previous studies to explore the guest capture and release processes in GroEL-assisted folding of GPCRs, by the reduced approach of employing CXCR4 transmembrane peptides as model substrates. Each of the CXCR4-derived peptides exhibited high affinity for GroEL with a binding stoichiometry near seven. It is found that the peptides interact with the paired α helices in the apical domain of the chaperonin which are similar with the binding sites of SBP (strongly binding peptide: SWMTTPWGFLHP). Complementary binding study with a single-ring version of GroEL indicates that each of the two chaperonin rings is competent for accommodating all the seven CXCR4 peptides bound to GroEL under saturation condition. Meanwhile, the binding kinetics of CXCR4 peptides with GroEL was also examined; ATP alone, or in combination of GroES evidently promoted the release of the peptide substrates from the chaperonin. The results obtained would be beneficial to understand the thermodynamic and kinetic nature of GroEL-GPCRs interaction which is the central molecular event in the assisted folding process.
Collapse
Affiliation(s)
- Haixia Chi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; Qingdao Langoo Oceantec Co., Ltd, Qingdao 266235, PR China
| | - Baomei Xu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Zhenzhen Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Junting Wei
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yan Xu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xinwei Lu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; College of Science, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
6
|
Wang X, Chen H, Lu X, Chi H, Li S, Huang F. Probing the interaction mechanisms between transmembrane peptides and the chaperonin GroEL with fluorescence anisotropy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:1-7. [PMID: 29304433 DOI: 10.1016/j.saa.2017.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Proper translocation, membrane insertion and folding are crucial biophysical steps in the biogenesis of functional transmembrane peptides/proteins (TMPs). ATP-dependent chaperonins are able to regulate each of these processes, but the underlying mechanisms remain unclear. In this work, interaction between the bacterial chaperonin GroEL and a synthetic fluorescent transmembrane peptide was investigated by fluorescence anisotropy. Binding of the peptide with GroEL resulted in increased fluorescence anisotropy and intensity. The dissociation constant and binding stoichiometry, as assessed by titration of the peptide with GroEL, were estimated to be 0.6±0.2μM and 2.96±0.35, respectively. Complementary study with the single-ring version of GroEL confirmed the high-affinity peptide binding, and indicates that the two GroEL rings may function alternatively in binding the peptides. The co-chaperonin GroES was found to be effective at releasing the peptides initially bound to GroEL with the help of ATP. Moreover, our observation with the single-ring GroEL mutant demonstrated that during the encapsulation of GroEL by GroES, the bound peptides may either be confined in the cage thus formed, or escape outside. Competitive binding experiments indicated that the peptides studied interact with GroEL through the paired helices H and I on its apical domain. Our spectroscopic studies revealed some basic mechanisms of interaction between transmembrane peptides and GroEL, which would be instrumental for deciphering the chaperonin-mediated TMP biogenesis.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Han Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xinwei Lu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Haixia Chi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
7
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|