1
|
Mori T, Takahashi S, Soga A, Arimoto M, Kishikawa R, Yama Y, Dohra H, Kawagishi H, Hirai H. Aerobic H 2 production related to formate metabolism in white-rot fungi. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1201889. [PMID: 37746127 PMCID: PMC10512323 DOI: 10.3389/ffunb.2023.1201889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 09/26/2023]
Abstract
Biohydrogen is mainly produced by anaerobic bacteria, anaerobic fungi, and algae under anaerobic conditions. In higher eukaryotes, it is thought that molecular hydrogen (H2) functions as a signaling molecule for physiological processes such as stress responses. Here, it is demonstrated that white-rot fungi produce H2 during wood decay. The white-rot fungus Trametes versicolor produces H2 from wood under aerobic conditions, and H2 production is completely suppressed under hypoxic conditions. Additionally, oxalate and formate supplementation of the wood culture increased the level of H2 evolution. RNA-seq analyses revealed that T. versicolor oxalate production from the TCA/glyoxylate cycle was down-regulated, and conversely, genes encoding oxalate and formate metabolism enzymes were up-regulated. Although the involvement in H2 production of a gene annotated as an iron hydrogenase was uncertain, the results of organic acid supplementation, gene expression, and self-recombination experiments strongly suggest that formate metabolism plays a role in the mechanism of H2 production by this fungus. It is expected that this novel finding of aerobic H2 production from wood biomass by a white-rot fungus will open new fields in biohydrogen research.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Saaya Takahashi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Ayumi Soga
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Misa Arimoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | | | - Yuhei Yama
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hideo Dohra
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
- Faculty of Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
2
|
Reshmy R, Athiyaman Balakumaran P, Divakar K, Philip E, Madhavan A, Pugazhendhi A, Sirohi R, Binod P, Kumar Awasthi M, Sindhu R. Microbial valorization of lignin: Prospects and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126240. [PMID: 34737164 DOI: 10.1016/j.biortech.2021.126240] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Lignin is the world's second most prevalent biomaterial, but its effective value-added product valorization methods are still being developed. The most common preparation processes for converting lignin to platform chemicals and biofuels are fragmentation and depolymerization. Due to its structural diversity, fragmentation generally produces a variety of products, necessitating tedious separation and purifying methods to isolate the desired products. Bacterial-based techniques are commonly utilized for lignin fragmentation due to their high metabolitic activity. Recent advancements in lignin valorization utilizing bacteria, such as lignin decomposing microbes and major pathways involved that can breakdown lignin into various valuable products namely lipids, furfural, vanillin, polyhydroxybutyrate, poly lactic acid blends were discussed in this review. This review also covers the genetic and fermentation methodologies to enhance lignin decomposition, challenges and future trends of microbe based lignin valorization.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - K Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur 602 117, Tamil Nadu, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
3
|
Mori T, Masuda A, Kawagishi H, Hirai H. Ethanol fermentation by saprotrophic white-rot fungus Phanerochaete sordida YK-624 during wood decay as a system for short-term resistance to hypoxic conditions. J Biosci Bioeng 2021; 133:64-69. [PMID: 34728154 DOI: 10.1016/j.jbiosc.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
In this study, major factors involved in regulating ethanol production from wood by the saprotrophic white-rot fungus Phanerochaete sordida YK-624 were investigated. P. sordida YK-624 produced ethanol from wood meal culture without the addition of any nutrients, and ethanol was produced from wood culture only when the oxygen concentration in headspace was reduced to ≤5%; thereafter, ethanol production ceased within a few days. Analyses of gene expression during aerobic incubation indicated that P. sordida simultaneously upregulates the glycolytic pathway from sugar uptake to pyruvate conversion during ethanol fermentation and suppresses pyruvate influx into the TCA cycle. Upon termination of ethanol fermentation, the expression of all tested genes was repressed, and the fungus ceased to grow. In contrast, the fungus could utilize ethanol for aerobic growth. These results suggest that ethanol fermentation by P. sordida functions as a short-term stress response system under anaerobic conditions during wood decay, enabling the fungus to rapidly resume growing when oxygen is supplied (e.g., following breakdown of plant cell walls or removal of the fungus from water immersion). This is the first report to describe the physiologic significance of ethanol fermentation in saprotrophic white-rot fungi.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Akane Masuda
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Draft Genome Sequence of the White-Rot Fungus Phanerochaete sordida YK-624. Microbiol Resour Announc 2021; 10:e0084221. [PMID: 34672697 PMCID: PMC8530024 DOI: 10.1128/mra.00842-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequence of the white-rot basidiomycete fungus Phanerochaete sordida YK-624 (ATCC 90872), which was isolated in Yakushima, Kagoshima, Japan. The genome of this strain was found to be 41.2 Mbp, with a G+C content of 58.7%, and to comprise 17,108 predicted protein-coding sequences.
Collapse
|
5
|
Genomic Studies of White-Rot Fungus Cerrena unicolor SP02 Provide Insights into Food Safety Value-Added Utilization of Non-Food Lignocellulosic Biomass. J Fungi (Basel) 2021; 7:jof7100835. [PMID: 34682256 PMCID: PMC8541250 DOI: 10.3390/jof7100835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cerrena unicolor is an ecologically and biotechnologically important wood-degrading basidiomycete with high lignocellulose degrading ability. Biological and genetic investigations are limited in the Cerrena genus and, thus, hinder genetic modification and commercial use. The aim of the present study was to provide a global understanding through genomic and experimental research about lignocellulosic biomass utilization by Cerrena unicolor. In this study, we reported the genome sequence of C. unicolor SP02 by using the Illumina and PacBio 20 platforms to obtain trustworthy assembly and annotation. This is the combinational 2nd and 3rd genome sequencing and assembly of C. unicolor species. The generated genome was 42.79 Mb in size with an N50 contig size of 2.48 Mb, a G + C content of 47.43%, and encoding of 12,277 predicted genes. The genes encoding various lignocellulolytic enzymes including laccase, lignin peroxidase, manganese peroxidase, cytochromes P450, cellulase, xylanase, α-amylase, and pectinase involved in the degradation of lignin, cellulose, xylan, starch, pectin, and chitin that showed the C. unicolor SP02 potentially have a wide range of applications in lignocellulosic biomass conversion. Genome-scale metabolic analysis opened up a valuable resource for a better understanding of carbohydrate-active enzymes (CAZymes) and oxidoreductases that provide insights into the genetic basis and molecular mechanisms for lignocellulosic degradation. The C. unicolor SP02 model can be used for the development of efficient microbial cell factories in lignocellulosic industries. The understanding of the genetic material of C. unicolor SP02 coding for the lignocellulolytic enzymes will significantly benefit us in genetic manipulation, site-directed mutagenesis, and industrial biotechnology.
Collapse
|
6
|
Islam MK, Wang H, Rehman S, Dong C, Hsu HY, Lin CSK, Leu SY. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. BIORESOURCE TECHNOLOGY 2020; 298:122558. [PMID: 31862395 DOI: 10.1016/j.biortech.2019.122558] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/12/2023]
Abstract
Excessive utilization of fossil fuels has resulted in serious concerns about climate change. Integrating biorefinery technology to convert waste-derived-lignocellulosic biomass into biofuels and biopolymers has become an emerging topic toward our sustainable future. Pretreatment to fractionate the building block chemicals from the biomass is a crucial unit operation to ease the downstream processes in biorefinery. However, application of solvents and chemicals in the process can create many operational and environmental challenges in sensitive areas like highly populated cities. To shed light on how to determine a green biorefinery, this study presents the sustainability metrics of various pretreatment techniques and their operational risks during urbanization. The proposed green indexes include fractionation outputs, chemical recyclability, operational profile, and safety factors. In line with the design principles of lignin valorization, the issue of urban biomass and water-and-energy nexus are addressed to support future development and application of urban biorefinery for municipal waste management.
Collapse
Affiliation(s)
- Md Khairul Islam
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Huaimin Wang
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Shazia Rehman
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chengyu Dong
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Shao-Yuan Leu
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
7
|
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, Liu Y, Lin CSK. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. BIORESOURCE TECHNOLOGY 2019; 291:121898. [PMID: 31395402 DOI: 10.1016/j.biortech.2019.121898] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.
Collapse
Affiliation(s)
- Chong Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Chao Chen
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Xiaofen Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, People's Republic of China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jianbin Yan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Yun Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
8
|
Mori T, Nagai Y, Kawagishi H, Hirai H. Functional characterization of the manganese transporter smf2 homologue gene, PsMnt, of Phanerochaete sordida YK-624 via homologous overexpression. FEMS Microbiol Lett 2019; 365:4939470. [PMID: 29566232 DOI: 10.1093/femsle/fny050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 11/12/2022] Open
Abstract
A homologue gene of the yeast natural resistance-associated macrophage protein (Nramp) family transporter smf2 was identified in the white-rot fungus Phanerochaete sordida YK-624. Relative expression levels of the homologue, designated PsMnt, were roughly equivalent in cultures containing 0 to 1000 μM Mn(II), a concentration non-toxic to the fungus. In the PsMnt-overexpressing mutant, cellular Mn accumulation and manganese peroxidase (MnP) activity increased significantly in 4-day cultures containing 10 μM MnSO4. Compared with the wild-type strain, MnP activity in the overexpressing mutants was higher at lower Mn concentrations (specifically 10-15 times higher). These results suggest that PsMnt is a high-affinity Mn transporter involved in cellular Mn accumulation under Mn-deficient conditions. This is the first report of an smf2 homologue in wood rot fungi.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yuki Nagai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
9
|
Effects of Glucose Concentration on Ethanol Fermentation of White-Rot Fungus Phanerochaete sordida YK-624 Under Aerobic Conditions. Curr Microbiol 2019; 76:263-269. [DOI: 10.1007/s00284-018-01622-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
|
10
|
Pejin J, Radosavljević M, Pribić M, Kocić-Tanackov S, Mladenović D, Djukić-Vuković A, Mojović L. Possibility of L-(+)-lactic acid fermentation using malting, brewing, and oil production by-products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:153-163. [PMID: 30343741 DOI: 10.1016/j.wasman.2018.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Industrial by-products such as brewer's spent grain (BSG) hydrolysate, malt rootlets extract (MRE) and soybean meal extract (SME) were used for L-(+) lactic acid (LA) production by a pure L. rhamnosus ATCC 7469 strain. The effect of the addition of MRE (10-50%) or SME (10-50%) in BSG hydrolysate on batch and fed-batch LA fermentation was evaluated. The addition of MRE and SME increased the concentration of free amino nitrogen (FAN) and essential minerals (Fe, Mg, Mn, and Zn), which had a positive effect on the fermentation. Also, the MRE addition significantly lowered C/N ration to a more favorable level for the efficient LA fermentation. In batch fermentation, the highest LA concentration (25.73 g/L), yield (86.31%), and volumetric productivity (0.95 g/L h-1), were obtained with the addition of 50% MRE. Further increase in LA concentration to 58.01 g/L, yield to 88.54%, and volumetric productivity to 1.19 g/L h-1 was achieved in fed-batch fermentation with addition of 50% MRE. A high optical purity of LA with 99.7% of L-(+)-isomer was obtained on the substrate based on industrial by-products. In addition, solid remains after BSG hydrolysis and MRE and SME preparation, together with the biomass of L. rhamnosus separated after the fermentation could be a good base for feed preparation.
Collapse
Affiliation(s)
- Jelena Pejin
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia
| | - Miloš Radosavljević
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia.
| | - Milana Pribić
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia
| | - Sunčica Kocić-Tanackov
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia
| | - Dragana Mladenović
- University of Belgrade, Faculty of Technology and Metallurgy, 11 000 Belgrade, Karnegijeva 4, Serbia
| | - Aleksandra Djukić-Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, 11 000 Belgrade, Karnegijeva 4, Serbia
| | - Ljiljana Mojović
- University of Belgrade, Faculty of Technology and Metallurgy, 11 000 Belgrade, Karnegijeva 4, Serbia
| |
Collapse
|
11
|
Eş I, Mousavi Khaneghah A, Barba FJ, Saraiva JA, Sant'Ana AS, Hashemi SMB. Recent advancements in lactic acid production - a review. Food Res Int 2018; 107:763-770. [DOI: 10.1016/j.foodres.2018.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
12
|
Role of Fungi in Biorefinery: A Perspective. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|