1
|
Hu Y, Dong H, Chen H, Shen X, Li H, Wen Q, Wang F, Qi Y, Shen J. PoSnf1 affects cellulose utilization through interaction with cellobiose transporter in Pleurotus ostreatus. Int J Biol Macromol 2024; 275:133503. [PMID: 38944091 DOI: 10.1016/j.ijbiomac.2024.133503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pleurotus ostreatus is one of the most cultivated edible fungi worldwide, but its lignocellulose utilization efficiency is relatively low (<50 %), which eventually affects the biological efficiency of P. ostreatus. Improving cellulase production and activity will contribute to enhancing the lignocellulose-degrading capacity of P. ostreatus. AMP-activated/Snf1 protein kinase plays important roles in regulating carbon and energy metabolism. The Snf1 homolog (PoSnf1) in P. ostreatus was obtained and analyzed using bioinformatics. The cellulose response of PoSnf1, the effect of the phosphorylation level of PoSnf1 on the expression of cellulose degradation-related genes, the putative proteins that interact with the phosphorylated PoSnf1 (P-PoSnf1), the cellobiose transport function of two sugar transporters (STP1 and STP2), and the interactions between PoSnf1 and STP1/STP2 were studied in this research. We found that cellulose treatment improved the phosphorylation level of PoSnf1, which further affected cellulase activity and the expression of most cellulose degradation-related genes. A total of 1, 024 proteins putatively interacting with P-PoSnf1 were identified, and they were enriched mainly in the substances transport and metabolism. Most of the putative cellulose degradation-related protein-coding genes could respond to cellulose. Among the P-PoSnf1-interacting proteins, the functions of two sugar transporters (STP1 and STP2) were further studied, and the results showed that both could transport cellobiose and were indirectly regulated by P-PoSnf1, and that STP2 could directly interact with PoSnf1. The results of this study indicated that PoSnf1 plays an important role in regulating the expression of cellulose degradation genes possibly by affecting cellobiose transport.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haozhe Dong
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haolan Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiaoye Shen
- College of Food Science and Technology, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Huihui Li
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuancheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Ge H, Marchisio MA. Hybrid Boolean gates show that Cas12c controls transcription activation effectively in the yeast S. cerevisiae. Front Bioeng Biotechnol 2023; 11:1267174. [PMID: 37771576 PMCID: PMC10523329 DOI: 10.3389/fbioe.2023.1267174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Among CRISPR-Cas systems, type V CRISPR-Cas12c is of significant interest because Cas12c recognizes a very simple PAM (TN) and has the ability to silence gene expression without cleaving the DNA. We studied how new transcription factors for the yeast Saccharomyces cerevisiae can be built on Cas12c. We found that, upon fusion to a strong activation domain, Cas12c is an efficient activator. Its functionality was proved as a component of hybrid Boolean gates, i.e., logic circuits that mix transcriptional and translational control (the latter reached via tetracycline-responsive riboswitches). Moreover, Cas12c activity can be strongly inhibited by the anti-CRISPR AcrVA1 protein. Thus, Cas12c has the potential to be a new tool to control the activation of gene expression within yeast synthetic gene circuits.
Collapse
|
3
|
Hogenkamp F, Hilgers F, Bitzenhofer NL, Ophoven V, Haase M, Bier C, Binder D, Jaeger K, Drepper T, Pietruszka J. Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different Promoter Systems. Chembiochem 2022; 23:e202100467. [PMID: 34750949 PMCID: PMC9299732 DOI: 10.1002/cbic.202100467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Indexed: 12/05/2022]
Abstract
Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Vera Ophoven
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Mona Haase
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Claus Bier
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Dennis Binder
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Jörg Pietruszka
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| |
Collapse
|
4
|
Catrileo D, Moreira S, Ganga MA, Godoy L. Effect of Light and p-Coumaric Acid on the Growth and Expression of Genes Related to Oxidative Stress in Brettanomyces bruxellensis LAMAP2480. Front Microbiol 2021; 12:747868. [PMID: 34899635 PMCID: PMC8656254 DOI: 10.3389/fmicb.2021.747868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
Brettanomyces bruxellensis is considered the most significant contaminant yeast in the wine industry since it causes a deterioration in the organoleptic properties of the wine and significant economic losses. This deterioration is due to the production of volatile phenols from hydroxycinnamic acids. These compounds possess antimicrobial properties; however, B. bruxellensis can resist this effect because it metabolizes them into less toxic ones. Recent studies have reported that B. bruxellensis grows under different stress conditions, including p-coumaric acid (pCA) but effective methods for its control have not been found yet. Since that in other yeasts, such as Saccharomyces cerevisiae, it has been described that light affects its growth, and we evaluated whether the light would have a similar effect on B. bruxellensis. The results show that at light intensities of 2,500 and 4,000 lux in the absence of pCA, B. bruxellensis LAMAP2480 does not grow in the culture medium; however, when the medium contains this acid, the yeast adapts to both factors of stress managing to grow. The expression of genes related to oxidative stress in B. bruxellensis LAMAP2480, such as SOD1, GCN4, and ESBP6, showed a higher relative expression when the yeast was exposed to 2,500 lux compared to 4,000 lux, agreeing with the growth curves. This suggests that a higher expression of the genes studied would be related to stress-protective effects by pCA.
Collapse
Affiliation(s)
- Daniela Catrileo
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sandra Moreira
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - María Angélica Ganga
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Liliana Godoy
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Hogenkamp F, Hilgers F, Knapp A, Klaus O, Bier C, Binder D, Jaeger KE, Drepper T, Pietruszka J. Effect of Photocaged Isopropyl β-d-1-thiogalactopyranoside Solubility on the Light Responsiveness of LacI-controlled Expression Systems in Different Bacteria. Chembiochem 2020; 22:539-547. [PMID: 32914927 PMCID: PMC7894499 DOI: 10.1002/cbic.202000377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Indexed: 01/02/2023]
Abstract
Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non‐invasive as well as easily tuneable. In the recent past, photo‐responsive inducer molecules such as 6‐nitropiperonyl‐caged IPTG (NP‐cIPTG) have been used as optochemical tools for Lac repressor‐controlled microbial expression systems. To further expand the applicability of the versatile optochemical on‐switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light‐mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water‐soluble cIPTG derivative proved to be particularly suitable for light‐mediated gene expression in these alternative expression hosts.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Claus Bier
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| |
Collapse
|