1
|
Yu J, Li C, Cheng Y, Guo S, Lu H, Xie X, Ji H, Qiao Y. Mechanism and improvement of yeast tolerance to biomass-derived inhibitors: A review. Biotechnol Adv 2025; 81:108562. [PMID: 40107432 DOI: 10.1016/j.biotechadv.2025.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lignocellulosic biomass is regarded as a potentially valuable second-generation biorefinery feedstock. Yeast has the ability to metabolize this substrate and convert it into fuel ethanol and an array of other chemical products. Nevertheless, during the pretreatment of lignocellulosic biomass, inhibitors (furanaldehydes, carboxylic acids, phenolic compounds, etc.) are generated, which impede the growth and metabolic activities of yeast cells. Consequently, developing yeast strains with enhanced tolerance to these inhibitors is a crucial technological objective, as it can significantly enhance the efficiency of lignocellulosic biorefineries. This review provides a concise overview of the process of inhibitor generation and the detrimental effects of these inhibitors on yeast. It also summarizes the current state of research on the mechanisms of yeast tolerance to these inhibitors, focusing specifically on recent advances in enhancing yeast tolerance to these inhibitors by rational and non-rational strategies. Finally, it discusses the current challenges and future research directions.
Collapse
Affiliation(s)
- Jinling Yu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Cuili Li
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yajie Cheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Shaobo Guo
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Hongzhao Lu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiuchao Xie
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yanming Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
2
|
Jofre FM, Queiroz SDS, Sanchez DA, Arruda PV, Santos JCD, Felipe MDGDA. Biotechnological potential of yeast cell wall: An overview. Biotechnol Prog 2024; 40:e3491. [PMID: 38934212 DOI: 10.1002/btpr.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The yeast cell wall is a complex structure whose main function is to protect the cell from physical and chemical damage, providing it with rigidity. It is composed of a matrix of covalently linked polysaccharides and proteins, including β-glucans, mannoproteins, and chitin, whose proportion can vary according to the yeast species and environmental conditions. The main components of the yeast cell wall have relevant properties that expand the possibilities of use in different industrial sectors, such as pharmaceutical, food, medical, veterinary, and cosmetic. Some applications include bioremediation, enzyme immobilization, animal feed, wine production, and hydrogel production. In the literature it is the description of the cell wall composition of model species like Saccharomyces cerevisiae and Candida albicans, however, it is important to know that this composition can vary according to the species or the culture medium conditions. Thus, understanding the structural composition of different species holds promise as an alternative to expanding the utilization of residual yeast from different bioprocesses. In the context of a circular economy, the conversion of residual yeast into valuable products is an attractive prospect for researchers aiming to develop sustainable technologies. This review provides an overview of yeast cell wall composition and its significance in biotechnological applications, considering prospects to increase the diversification of these compounds in industry.
Collapse
Affiliation(s)
- Fanny Machado Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Sarah de Souza Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Diana Alva Sanchez
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Priscila Vaz Arruda
- Department of Bioprocess and Biotechnology Engineering, Federal University of Technology-Paraná (UTFPR), Toledo, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | | |
Collapse
|
3
|
Xie CY, Su RR, Wu B, Sun ZY, Tang YQ. Response mechanisms of different Saccharomyces cerevisiae strains to succinic acid. BMC Microbiol 2024; 24:158. [PMID: 38720268 PMCID: PMC11077785 DOI: 10.1186/s12866-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.
Collapse
Affiliation(s)
- Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Ran-Ran Su
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture, Renmin Rd. 4-13, Chengdu, 610041, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
4
|
de Mello FDSB, Coradini ALV, Carazzolle MF, Maneira C, Furlan M, Pereira GAG, Teixeira GS. Genetic mapping of a bioethanol yeast strain reveals new targets for hydroxymethylfurfural- and thermotolerance. Microbiol Res 2022; 263:127138. [DOI: 10.1016/j.micres.2022.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
|
5
|
Liu ZL, Huang X. Copy number variants impact phenotype-genotype relationships for adaptation of industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2022; 106:6611-6623. [PMID: 36117206 DOI: 10.1007/s00253-022-12137-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae possesses a plastic genome enabling its adaptation to varied environment conditions. A more robust ethanologenic industrial yeast strain NRRL Y-50049 was obtained through laboratory adaptation that is resistant to 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF), a major class of toxic chemicals associated with lignocellulose-to-biofuel conversion. A significant amount of knowledge has been achieved in characterizing its tolerant phenotypes and molecular mechanisms of the resistance. Recent findings on a limited number of nonsynonymous SNP (single nucleotide polymorphism) detected in NRRL Y-50049 compared with its progenitor NRRL Y-12632 raised doubt of SNP roles in the tolerance adaptation. The genotype-phenotype relationship for yeast adaptation to the toxic chemicals is yet unclear. Here, we examine copy number variant (CNV) of the adapted strain NRRL Y-50049 to address phenotype-genotype relationships. As a background information, CNV of model strain S288C of the reference genome was also examined versus the industrial-type strain NRRL Y-12632. More than 200 CNVs, mostly duplication events, were detected in NRRL Y-12632 compared with the laboratory model strain S288C. Such enriched genetic background supports its more diversified phenotype response for the industrial yeast than the laboratory strain S288C. Comparing the two industrial strains, we found extra nine CNVs in the mitochondrial genome and 28 CNVs in the nuclear genome of NRRL Y-50049 versus its progenitor NRRL Y-12632. Continued DNA recombination event and high rate of CNV observed in NRRL Y-50049 versus its progenitor suggests that CNV is more impactful than SNP in association with phenotype-genotype relationships of yeast adaptation to the toxic chemical stress. COX1 and COB loci were defined as DNA recombination hotspots in the mitochondrial genome for the industrial yeast based on the high frequency of CNVs observed in these loci. KEY POINTS: • COX1 and COB loci are identified as DNA recombination hotspots for the industrial yeast. • The industrial yeast type strain NRRL Y-12632 possesses more CNVs vs the reference genome S288C. • CNV is more important than SNP on phenotype-genotype relationships for yeast adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL, 61604, USA.
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
6
|
Chen X, Lu Z, Chen Y, Wu R, Luo Z, Lu Q, Guan N, Chen D. Deletion of the MBP1 Gene, Involved in the Cell Cycle, Affects Respiration and Pseudohyphal Differentiation in Saccharomyces cerevisiae. Microbiol Spectr 2021; 9:e0008821. [PMID: 34346754 PMCID: PMC8552743 DOI: 10.1128/spectrum.00088-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Mbp1p is a component of MBF (MluI cell cycle box binding factor, Mbp1p-Swi6p) and is well known to regulate the G1-S transition of the cell cycle. However, few studies have provided clues regarding its role in fermentation. This work aimed to recognize the function of the MBP1 gene in ethanol fermentation in a wild-type industrial Saccharomyces cerevisiae strain. MBP1 deletion caused an obvious decrease in the final ethanol concentration under oxygen-limited (without agitation), but not under aerobic, conditions (130 rpm). Furthermore, the mbp1Δ strain showed 84% and 35% decreases in respiration intensity under aerobic and oxygen-limited conditions, respectively. These findings indicate that MBP1 plays an important role in responding to variations in oxygen content and is involved in the regulation of respiration and fermentation. Unexpectedly, mbp1Δ also showed pseudohyphal growth, in which cells elongated and remained connected in a multicellular arrangement on yeast extract-peptone-dextrose (YPD) plates. In addition, mbp1Δ showed an increase in cell volume, associated with a decrease in the fraction of budded cells. These results provide more detailed information about the function of MBP1 and suggest some clues to efficiently improve ethanol production by industrially engineered yeast strains. IMPORTANCE Saccharomyces cerevisiae is an especially favorable organism used for ethanol production. However, inhibitors and high osmolarity conferred by fermentation broth, and high concentrations of ethanol as fermentation runs to completion, affect cell growth and ethanol production. Therefore, yeast strains with high performance, such as rapid growth, high tolerance, and high ethanol productivity, are highly desirable. Great efforts have been made to improve their performance by evolutionary engineering, and industrial strains may be a better start than laboratory ones for industrial-scale ethanol production. The significance of our research is uncovering the function of MBP1 in ethanol fermentation in a wild-type industrial S. cerevisiae strain, which may provide clues to engineer better-performance yeast in producing ethanol. Furthermore, the results that lacking MBP1 caused pseudohyphal growth on YPD plates could shed light on the development of xylose-fermenting S. cerevisiae, as using xylose as the sole carbon source also caused pseudohyphal growth.
Collapse
Affiliation(s)
- Xiaoling Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Zhilong Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Ying Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Renzhi Wu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Zhenzhen Luo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Qi Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Ni Guan
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
7
|
Liu ZL. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements. Appl Microbiol Biotechnol 2021; 105:2991-3007. [PMID: 33830300 DOI: 10.1007/s00253-021-11256-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Common toxic compounds 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) are formed from dehydration of pentose and hexose, respectively, during decomposition of lignocellulosic biomass polymers. Furfural and HMF represent a major class of aldehyde toxic chemicals that inhibit microbial growth and interfere with subsequent fermentation for production of renewable fuels and chemicals. Understanding mechanisms of yeast tolerance aids development of tolerant strains as the most economic means to overcome the toxicity. This review updates current knowledge on yeast resistance to these toxic chemicals obtained from rapid advances in the past few years. Findings are largely exemplified by an adapted strain NRRL Y-50049 compared with its progenitor, the industrial yeast Saccharomyces cerevisiae type strain NRRL Y-12632. Newly characterized molecular phenotypes distinguished acquired resistant components of Y-50049 from innate stress response of its progenitor Y-12632. These findings also raised important questions on how to address more deeply ingrained changes in addition to local renovations for yeast adaptation. An early review on understandings of yeast tolerance to these inhibitory compounds is available and its contents omitted here to avoid redundancy. Controversial and confusing issues on identification of yeast resistance to furfural and HMF are further clarified aiming improved future research. Propositions and perspectives on research understanding molecular mechanisms of yeast resistance and future improvements are also presented. KEY POINTS: • Distinguished adapted resistance from innate stress response in yeast. • Defined pathway-based molecular phenotypes of yeast resistance. • Proposed genomic insight and perspectives on yeast resistance and adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- National Center for Agricultural Utilization Research, Bioenergy Research Unit, USDA Agricultural Research Service, 1815 N. University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
8
|
Kłosowski G, Mikulski D. Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth. Molecules 2021; 26:molecules26040806. [PMID: 33557207 PMCID: PMC7913964 DOI: 10.3390/molecules26040806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the specific response of yeast cells to environmental stress factors is the starting point for selecting the conditions of adaptive culture in order to obtain a yeast line with increased resistance to a given stress factor. The aim of the study was to evaluate the specific cellular response of Saccharomyces cerevisiae strain Ethanol Red to stress caused by toxic by-products generated during the pretreatment of lignocellulose, such as levulinic acid, 5-hydroxymethylfurfural, furfural, ferulic acid, syringaldehyde and vanillin. The presence of 5-hydroxymethylfurfural at the highest analyzed concentration (5704.8 ± 249.3 mg/L) under aerobic conditions induced the overproduction of ergosterol and trehalose. On the other hand, under anaerobic conditions (during the alcoholic fermentation), a decrease in the biosynthesis of these environmental stress indicators was observed. The tested yeast strain was able to completely metabolize 5-hydroxymethylfurfural, furfural, syringaldehyde and vanillin, both under aerobic and anaerobic conditions. Yeast cells reacted to the presence of furan aldehydes by overproducing Hsp60 involved in the control of intracellular protein folding. The results may be helpful in optimizing the process parameters of second-generation ethanol production, in order to reduce the formation and toxic effects of fermentation inhibitors.
Collapse
|
9
|
Changes in cell wall structure and protein set in Candida maltosa grown on hexadecane. Folia Microbiol (Praha) 2020; 66:247-253. [PMID: 33247329 DOI: 10.1007/s12223-020-00840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
The yeast Candida maltosa is a model organism for studying adaptive changes in the structure and function of the cell wall when consuming water-insoluble nutrient sources. The cells of C. maltosa that utilize hydrocarbons contain supramolecular structures, so-called "canals" in the cell wall. Differences in protein profiles of culture liquids and cell wall extracts of C. maltosa grown on glucose and hexadecane were analyzed. Three proteins specific of cells grown on hexadecane were revealed using mass spectrometry: glycosyl hydrolase EPD2 in the culture liquid; a protein belonging to the cytochrome C family in the 0.5 mol/L NaCl extract; and PPIA_CANAL protein known as chaperone, in the 0.1% SDS extract. The possible role of these proteins in cell wall structures responsible for adaptation to hexadecane utilization is discussed.
Collapse
|
10
|
Liu ZL, Huang X. A glimpse of potential transposable element impact on adaptation of the industrial yeast Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5891233. [PMID: 32780789 DOI: 10.1093/femsyr/foaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/23/2020] [Indexed: 01/16/2023] Open
Abstract
The adapted industrial yeast strain Saccharomyces cerevisiae NRRL Y-50049 is able to in situ detoxify major toxic aldehyde compounds derived from sugar conversion of lignocellulosic biomass while producing ethanol. Pathway-based studies on its mechanisms of tolerance have been reported previously, however, little is known about transposable element (TE) involvement in its adaptation to inhibitory compounds. This work presents a comparative dynamic transcription expression analysis in response to a toxic treatment between Y-50049 and its progenitor, an industrial type strain NRRL Y-12632, using a time-course study. At least 77 TEs from Y-50049 showed significantly increased expression compared with its progenitor, especially during the late lag phase. Sequence analysis revealed significant differences in TE sequences between the two strains. Y-50049 was also found to have a transposons of yeast 2 (Ty2) long terminal repeat-linked YAT1 gene showing significantly higher copy number changes than its progenitor. These results raise awareness of potential TE involvement in the adaptation of industrial yeast to the tolerance of toxic chemicals.
Collapse
Affiliation(s)
- Z Lewis Liu
- BioEnrgy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL USA 61604
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA USA 50011
| |
Collapse
|
11
|
Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol 2020; 104:3473-3492. [PMID: 32103314 DOI: 10.1007/s00253-020-10434-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA.
| | - Menggen Ma
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA
| |
Collapse
|
12
|
Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2019; 103:5781-5796. [PMID: 31139900 DOI: 10.1007/s00253-019-09906-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Inhibitory compounds liberated from lignocellulose pretreatment are representative toxic chemicals that repress microbial growth and metabolism. A tolerant strain of the industrial yeast Saccharomyces cerevisiae is able to detoxify a major class of toxic compounds while producing ethanol. Knowledge on the yeast tolerance was mostly obtained by gene expression analysis and limited protein expression evidence is yet available underlying the yeast adaptation. Here we report a comparative protein expression profiling study on Y-50049, a tolerant strain compared with its parental industrial type strain Y-12632. We found a distinctive protein expression of glucose-6-phosphate dehydrogenase (Zwf1) in Y-50049 but not in Y-12632, in the relatively conserved glycolysis and pentose phosphate pathway (PPP) in response to a combinational challenge of 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF). A group of proteins with aldehyde reduction activity was uniquely induced expressed in Y-50049 but not in Y-12632. Such evidence allowed fine-tuning a mechanism of the renovated in situ detoxification by Y-50049. As the key protein, Zwf1 drove the glucose metabolism in favor of the oxidative branch of the PPP facilitating in situ detoxification of the toxic chemicals by Y-50049. The activated expression of Zwf1 generated the essential cofactor nicotinamide adenine dinucleotide phosphate (NADPH) enabling reduction of furfural and HMF through a group of aldehyde reduction enzymes. In return, the activate aldehyde reductions released desirable feedbacks of NADP+ stimulating continued oxidative activity of Zwf1. Thus, a well-maintained cofactor regeneration cycle was established to restore the cofactor imbalance caused by furfural-HMF. Challenges and perspectives on adaptation of significantly differential expressions of ribosomal proteins and other unique proteins are also discussed.
Collapse
|
13
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|