1
|
Fan J, Ma W, Yu Y, Li Y, Nie Z. Recent advances in entirely hand-held ionization sources for mass spectrometry. Anal Bioanal Chem 2024; 416:2057-2063. [PMID: 37930374 DOI: 10.1007/s00216-023-05022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Ambient ionization mass spectrometry (AIMS) has been developing explosively since its first debut. The ionization process was hence able to be achieved under atmospheric pressure, facilitating on-site field analysis in a variety of areas, such as clinical diagnosis, metabolic phenotyping, and surface analysis. As part of the ambitious goal of making MS a general device that can be used in everyday life, lots of efforts have been paid to miniaturize the ionization source. This review discusses avant-garde sources that could be entirely hand-held without any accessories. The structure and applications of the devices are described in detail as well. They could be expediently used in real-time and on-site analysis, presenting a great future potential for the routinizing of MS.
Collapse
Affiliation(s)
- Jinghan Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbo Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yile Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
2
|
Géhin C, Tokarska J, Fowler SJ, Barran PE, Trivedi DK. No skin off your back: the sampling and extraction of sebum for metabolomics. Metabolomics 2023; 19:21. [PMID: 36964290 PMCID: PMC10038389 DOI: 10.1007/s11306-023-01982-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/19/2023] [Indexed: 03/26/2023]
Abstract
INTRODUCTION Sebum-based metabolomics (a subset of "sebomics") is a developing field that involves the sampling, identification, and quantification of metabolites found in human sebum. Sebum is a lipid-rich oily substance secreted by the sebaceous glands onto the skin surface for skin homeostasis, lubrication, thermoregulation, and environmental protection. Interest in sebomics has grown over the last decade due to its potential for rapid analysis following non-invasive sampling for a range of clinical and environmental applications. OBJECTIVES To provide an overview of various sebum sampling techniques with their associated challenges. To evaluate applications of sebum for clinical research, drug monitoring, and human biomonitoring. To provide a commentary of the opportunities of using sebum as a diagnostic biofluid in the future. METHODS Bibliometric analyses of selected keywords regarding skin surface analysis using the Scopus search engine from 1960 to 2022 was performed on 12th January 2023. The published literature was compartmentalised based on what the work contributed to in the following areas: the understanding about sebum, its composition, the analytical technologies used, or the purpose of use of sebum. The findings were summarised in this review. RESULTS Historically, about 15 methods of sampling have been used for sebum collection. The sample preparation approaches vary depending on the analytes of interest and are summarised. The use of sebum is not limited to just skin diseases or drug monitoring but also demonstrated for other systemic disease. Most of the work carried out for untargeted analysis of metabolites associated with sebum has been in the recent two decades. CONCLUSION Sebum has a huge potential beyond skin research and understanding how one's physiological state affects or reflects on the skin metabolome via the sebaceous glands itself or by interactions with sebaceous secretion, will open doors for simpler biomonitoring. Sebum acts as a sink to environmental metabolites and has applications awaiting to be explored, such as biosecurity, cross-border migration, localised exposure to harmful substances, and high-throughput population screening. These applications will be possible with rapid advances in volatile headspace and lipidomics method development as well as the ability of the metabolomics community to annotate unknown species better. A key issue with skin surface analysis that remains unsolved is attributing the source of the metabolites found on the skin surface before meaningful biological interpretation.
Collapse
Affiliation(s)
- C Géhin
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - J Tokarska
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - S J Fowler
- Department of Respiratory Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - P E Barran
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - D K Trivedi
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
3
|
Ogrinc N, Chaillou P, Kruszewski A, Duriez C, Salzet M, Fournier I. Ambient Mass Spectrometry Imaging by Water-Assisted Laser Desorption/Ionization for Ex Vivo and in Vivo Applications. Methods Mol Biol 2023; 2688:83-94. [PMID: 37410286 DOI: 10.1007/978-1-0716-3319-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Water-assisted laser desorption/ionization mass spectrometry (WALDI-MS), also known as SpiderMass, is an emerging ambient ionization technique for in vivo and real-time analysis. It employs a remote infrared (IR) laser tuned to excite the most intense vibrational band (O-H) of water. The water molecules act as an endogenous matrix leading to the desorption/ionization of a variety of biomolecules from tissues, particularly metabolites and lipids. WALDI-MS was recently advanced into an imaging modality for ex vivo 2D sections and 3D in vivo real-time imaging. Here, we describe the methodological aspects for performing 2D and 3D imaging experiments with WALDI-MSI and the parameters for optimizing the image acquisition.
Collapse
Affiliation(s)
- Nina Ogrinc
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Paul Chaillou
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Alexandre Kruszewski
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Cristian Duriez
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Michel Salzet
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Isabelle Fournier
- Université de Lille, Inserm, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France.
| |
Collapse
|
4
|
Van Hese L, De Vleeschouwer S, Theys T, Larivière E, Solie L, Sciot R, Siegel TP, Rex S, Heeren RM, Cuypers E. Towards real-time intraoperative tissue interrogation for REIMS-guided glioma surgery. J Mass Spectrom Adv Clin Lab 2022; 24:80-89. [PMID: 35572786 PMCID: PMC9095887 DOI: 10.1016/j.jmsacl.2022.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
REIMS can differentiate glioblastoma from normal brain with 99.2% sensitivity. Starting from 5% glioblastoma, REIMS showed a 100% correct classification rate. Low-grade gliomas can be identified with a 97.5% sensitivity.
Introduction Objectives Methods Results Conclusion
Collapse
Affiliation(s)
- Laura Van Hese
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Anaesthesiology, UZ Leuven; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Vleeschouwer
- Department of Neurosurgery, Laboratory for Experimental Neurosurgery and Neuroanatomy, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, Laboratory for Experimental Neurosurgery and Neuroanatomy, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Emma Larivière
- Department of Neurosurgery, Laboratory for Experimental Neurosurgery and Neuroanatomy, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Lien Solie
- Department of Neurosurgery, Laboratory for Experimental Neurosurgery and Neuroanatomy, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Steffen Rex
- Department of Anaesthesiology, UZ Leuven; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
- Corresponding author at: M4I Institute, Division of Imaging Mass Spectrometry, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
5
|
Santilli AML, Ren K, Oleschuk R, Kaufmann M, Rudan J, Fichtinger G, Mousavi P. Application of Intraoperative Mass Spectrometry and Data Analytics for Oncological Margin Detection, A Review. IEEE Trans Biomed Eng 2022; 69:2220-2232. [PMID: 34982670 DOI: 10.1109/tbme.2021.3139992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE A common phase of early-stage oncological treatment is the surgical resection of cancerous tissue. The presence of cancer cells on the resection margin, referred to as positive margin, is correlated with the recurrence of cancer and may require re-operation, negatively impacting many facets of patient outcomes. There exists a significant gap in the surgeons ability to intraoperatively delineate between tissues. Mass spectrometry methods have shown considerable promise as intraoperative tissue profiling tools that can assist with the complete resection of cancer. To do so, the vastness of the information collected through these modalities must be digested, relying on robust and efficient extraction of insights through data analysis pipelines. METHODS We review clinical mass spectrometry literature and prioritize intraoperatively applied modalities. We also survey the data analysis methods employed in these studies. RESULTS Our review outlines the advantages and shortcomings of mass spectrometry imaging and point-based tissue probing methods. For each modality, we identify statistical, linear transformation and machine learning techniques that demonstrate high performance in classifying cancerous tissues across several organ systems. A limited number of studies presented results captured intraoperatively. CONCLUSION Through continued research of data centric techniques, like mass spectrometry, and the development of robust analysis approaches, intraoperative margin assessment is becoming feasible. SIGNIFICANCE By establishing the relatively short history of mass spectrometry techniques applied to surgical studies, we hope to inform future applications and aid in the selection of suitable data analysis frameworks for the development of intraoperative margin detection technologies.
Collapse
|
6
|
Meisenbichler C, Kluibenschedl F, Müller T. A 3-in-1 Hand-Held Ambient Mass Spectrometry Interface for Identification and 2D Localization of Chemicals on Surfaces. Anal Chem 2020; 92:14314-14318. [PMID: 33063994 PMCID: PMC7643069 DOI: 10.1021/acs.analchem.0c02615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Desorption electrospray ionization
(DESI), easy ambient sonic-spray
ionization (EASI) and low-temperature plasma (LTP) ionization are
powerful ambient ionization techniques for mass spectrometry. However,
every single method has its limitation in terms of polarity and molecular
weight of analyte molecules. After the miniaturization of every possible
component of the different ion sources, we finally were able to embed
two emitters and an ion transfer tubing into a small, hand-held device.
The pen-like interface is connected to the mass spectrometer and a
separate control unit via a bundle of flexible tubing and cables.
The novel device allows the user to ionize an extended range of chemicals
by simple switching between DESI, voltage-free EASI, or LTP ionization
as well as to freely move the interface over a surface of interest.
A mini camera, which is mounted on the tip of the pen, magnifies the
desorption area and enables a simple positioning of the pen. The interface
was successfully tested using different types of chemicals, pharmaceuticals,
and real life samples. Moreover, the combination of optical data from
the camera module and chemical data obtained by mass analysis facilitates
a novel type of imaging mass spectrometry, which we name “interactive
mass spectrometry imaging (IMSI)”.
Collapse
Affiliation(s)
- Christina Meisenbichler
- Institute of Organic Chemistry, Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Florian Kluibenschedl
- Institute of Organic Chemistry, Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry, Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Kuo TH, Dutkiewicz EP, Pei J, Hsu CC. Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities. Anal Chem 2019; 92:2353-2363. [DOI: 10.1021/acs.analchem.9b05454] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ewelina P. Dutkiewicz
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiying Pei
- School of Marine Sciences, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Genangeli M, Heeren RMA, Porta Siegel T. Tissue classification by rapid evaporative ionization mass spectrometry (REIMS): comparison between a diathermic knife and CO 2 laser sampling on classification performance. Anal Bioanal Chem 2019; 411:7943-7955. [PMID: 31713015 PMCID: PMC6920236 DOI: 10.1007/s00216-019-02148-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023]
Abstract
The increasing need for rapid, in situ, and robust tissue profiling approaches in the context of intraoperative diagnostics has led to the development of a large number of ambient ionization-based surface sampling strategies. This paper compares the performances of a diathermic knife and a CO2 laser handpiece, both clinically approved, coupled to a rapid evaporative ionization mass spectrometry (REIMS) source for quasi-instantaneous tissue classification. Several fresh meat samples (muscle, liver, bone, bone marrow, cartilage, skin, fat) were obtained from different animals. Overall, the laser produced cleaner cuts and more reproducible and higher spectral quality signals when compared with the diathermic knife (CV laser = 9-12%, CV diathermic = 14-23%). The molecular profiles were subsequently entered into a database and PCA/LDA classification/prediction models were built to assess if the data generated with one sampling modality can be employed to classify the data generated with the other handpiece. We demonstrate that the correct classification rate of the models increases (+ 25%) with the introduction of a model based on peak lists that are tissue-specific and common to the two handpieces, compared with considering solely the whole molecular profile. This renders it possible to use a unique and universal database for quasi-instantaneous tissue recognition which would provide similar classification results independent of the handpiece used. Furthermore, the laser was able to generate aerosols rich in lipids from hard tissues such as bone, bone marrow, and cartilage. Combined, these results demonstrate that REIMS is a valuable and versatile tool for instantaneous identification/classification of hard tissue and coupling to different aerosol-generating handpieces expands its field of application. Graphical abstract.
Collapse
Affiliation(s)
- Michele Genangeli
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
- School of Pharmacy, Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, MC, Italy
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Ogrinc N, Saudemont P, Balog J, Robin YM, Gimeno JP, Pascal Q, Tierny D, Takats Z, Salzet M, Fournier I. Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. Nat Protoc 2019; 14:3162-3182. [PMID: 31597965 DOI: 10.1038/s41596-019-0217-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/14/2019] [Indexed: 11/09/2022]
Abstract
Rapid, sensitive, precise and accurate analysis of samples in their native in vivo environment is critical to better decipher physiological and physiopathological mechanisms. SpiderMass is an ambient mass spectrometry (MS) system designed for mobile in vivo and real-time surface analyses of biological tissues. The system uses a fibered laser, which is tuned to excite the most intense vibrational band of water, resulting in a process termed water-assisted laser desorption/ionization (WALDI). The water molecules act as an endogenous matrix in a matrix-assisted laser desorption ionization (MALDI)-like scenario, leading to the desorption/ionization of biomolecules (lipids, metabolites and proteins). The ejected material is transferred to the mass spectrometer through an atmospheric interface and a transfer line that is several meters long. Here, we formulate a three-stage procedure that includes (i) a laser system setup coupled to a Waters Q-TOF or Thermo Fisher Q Exactive mass analyzer, (ii) analysis of specimens and (iii) data processing. We also describe the optimal setup for the analysis of cell cultures, fresh-frozen tissue sections and in vivo experiments on skin. With proper optimization, the system can be used for a variety of different targets and applications. The entire procedure takes 1-2 d for complex samples.
Collapse
Affiliation(s)
- Nina Ogrinc
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
| | - Philippe Saudemont
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- SATT-Nord, Immeuble Central Gare, Lille, France
| | - Julia Balog
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - Yves-Marie Robin
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Unité de Pathologie Morphologique et Moléculaire, Centre Oscar Lambret, Lille, France
| | - Jean-Pascal Gimeno
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
| | - Quentin Pascal
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- OCR (Oncovet Clinical Research), Eurasanté, Loos, France
| | - Dominique Tierny
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- OCR (Oncovet Clinical Research), Eurasanté, Loos, France
| | - Zoltan Takats
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
| |
Collapse
|
10
|
Fournier I, Salzet M. Mass spectrometry-based intraoperative tumor diagnostics: a letter in reply. Future Sci OA 2019; 5:FSO403. [PMID: 31428449 PMCID: PMC6695522 DOI: 10.2144/fsoa-2019-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, Inserm U1192 - Laboratoire Protéomique, F-59655 Villeneuve d'Ascq Cedex, France
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, Inserm U1192 - Laboratoire Protéomique, F-59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
11
|
Real time human micro-organisms biotyping based on Water-Assisted Laser Desorption/Ionization. EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
We previously demonstrated that remote infrared Matrix Assisted Laser Desorption Ionization technology (Spidermass) using endogenous water as matrix (or so called water assisted laser desorption/ionization) was enabling real-time in vitro and in vivo analysis of clinical pathological tissues. In the present work, Spidermass was used to biotype human pathogens either from liquid bacteria growth in time course, from petri dish or on smears. Reproducibility experiments as well as bacteria dispersion and lipids identifications with SpiderMass in MS/MS mode were undertaken. The whole of the data establish that SpiderMass instrument allows real time bacteria biotyping and can be useful in clinic for pathogen identification.
Collapse
|
12
|
Saudemont P, Quanico J, Robin YM, Baud A, Balog J, Fatou B, Tierny D, Pascal Q, Minier K, Pottier M, Focsa C, Ziskind M, Takats Z, Salzet M, Fournier I. Real-Time Molecular Diagnosis of Tumors Using Water-Assisted Laser Desorption/Ionization Mass Spectrometry Technology. Cancer Cell 2018; 34:840-851.e4. [PMID: 30344004 DOI: 10.1016/j.ccell.2018.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/08/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022]
Abstract
Histopathological diagnosis of biopsy samples and margin assessment of surgical specimens are challenging aspects in sarcoma. Using dog patient tissues, we assessed the performance of a recently developed technology for fast ex vivo molecular lipid-based diagnosis of sarcomas. The instrument is based on mass spectrometry (MS) molecular analysis through a laser microprobe operating under ambient conditions using excitation of endogenous water molecules. Classification models based on cancer/normal/necrotic, tumor grade, and subtypes showed a minimum of 97.63% correct classification. Specific markers of normal, cancer, and necrotic regions were identified by tandem MS and validated by MS imaging. Real-time detection capabilities were demonstrated by ex vivo analysis with direct interrogation of classification models.
Collapse
Affiliation(s)
- Philippe Saudemont
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; SATT-Nord, Immeuble Central Gare, 4(ème) étage, 25 Avenue Charles St Venant, 59800 Lille, France
| | - Jusal Quanico
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; Université de Lille, CNRS UMR 8523, Physique des Lasers Atomes et Molécules (PhLAM), 59655 Villeneuve d'Ascq Cedex, France
| | - Yves-Marie Robin
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; Unité de Pathologie Morphologique et Moléculaire, Centre Oscar Lambret, 3 Rue Frédéric Combemale, 59020 Lille Cedex, France
| | - Anna Baud
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France
| | - Julia Balog
- European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, Praed Street, London, NW1 1SQ, UK
| | - Benoit Fatou
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France
| | - Dominique Tierny
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; OCR (Oncovet Clinical Research), Parc Eurasanté Lille Métropole, 80 Rue du Dr Yersin, 59120 Loos, France
| | - Quentin Pascal
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; OCR (Oncovet Clinical Research), Parc Eurasanté Lille Métropole, 80 Rue du Dr Yersin, 59120 Loos, France
| | - Kevin Minier
- Oncovet, Avenue Paul Langevin, 59650 Villeneuve d'Ascq, France
| | - Mélissa Pottier
- Oncovet, Avenue Paul Langevin, 59650 Villeneuve d'Ascq, France
| | - Cristian Focsa
- Université de Lille, CNRS UMR 8523, Physique des Lasers Atomes et Molécules (PhLAM), 59655 Villeneuve d'Ascq Cedex, France
| | - Michael Ziskind
- Université de Lille, CNRS UMR 8523, Physique des Lasers Atomes et Molécules (PhLAM), 59655 Villeneuve d'Ascq Cedex, France
| | - Zoltan Takats
- European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France; Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, Praed Street, London, NW1 1SQ, UK.
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France.
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Faculté des Sciences, Campus Cité Scientifique, Bât SN3, 1er étage, 59655 Villeneuve d'Ascq Cedex, France; European Associated Laboratory Inserm-Imperial College of London, LANCET, 59655 Villeneuve d'Ascq Cedex, France.
| |
Collapse
|