1
|
Ren XX, Su BM, Xu XQ, Xu L, Lin J. Rational design of short-chain dehydrogenase/reductase for enantio-complementary synthesis of chiral 1,2-diols by successive hydroxymethylation and reduction of aldehydes. Biotechnol Bioeng 2024; 121:3796-3807. [PMID: 39253999 DOI: 10.1002/bit.28841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Enantiopure 1,2-diols are widely used in the production of pharmaceuticals, cosmetics, and functional materials as essential building blocks or bioactive compounds. Nevertheless, developing a mild, efficient and environmentally friendly biocatalytic route for manufacturing enantiopure 1,2-diols from simple substrate remains a challenge. Here, we designed and realized a step-wise biocatalytic cascade to access chiral 1,2-diols starting from aromatic aldehyde and formaldehyde enabled by a newly mined benzaldehyde lyase from Sphingobium sp. combined with a pair of tailored-made short-chain dehydrogenase/reductase from Pseudomonas monteilii (PmSDR-MuR and PmSDR-MuS) capable of producing (R)- and (S)-1-phenylethane-1,2-diol with 99% ee. The planned biocatalytic cascade could synthesize a series of enantiopure 1,2-diols with a broad scope (16 samples), excellent conversions (94%-99%), and outstanding enantioselectivity (up to 99% ee), making it an effective technique for producing chiral 1,2-diols in a more environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Xiu-Xin Ren
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou, China
| | - Bing-Mei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou, China
| | - Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou, China
| |
Collapse
|
2
|
Umair M, Sultana T, Xiaoyu Z, Senan AM, Jabbar S, Khan L, Abid M, Murtaza MA, Kuldeep D, Al‐Areqi NAS, Zhaoxin L. LC-ESI-QTOF/MS characterization of antimicrobial compounds with their action mode extracted from vine tea ( Ampelopsis grossedentata) leaves. Food Sci Nutr 2022; 10:422-435. [PMID: 35154679 PMCID: PMC8825723 DOI: 10.1002/fsn3.2679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Vine tea (Ampelopsis grossedentata) is a tea plant cultivated south of the Chinese Yangtze River. It has anti-inflammatory properties and is used to normalize blood circulation and detoxification. The leaves of vine tea are the most abundant source of flavonoids, such as dihydromyricetin and myricetin. However, as the main bioactive flavonoid in vine tea, dihydromyricetin was the main focus of previous research. This study aimed to explore the antibacterial activities of vine tea against selected foodborne pathogens. The antimicrobial activity of vine tea extract was evaluated by the agar well diffusion method. Cell membrane integrity and bactericidal kinetics, along with physical damage to the cell membrane, were also observed. The extract was analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD), and the results were confirmed using a modified version of a previously published method that combined liquid chromatography and electrospray-ionized quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Cell membrane integrity and bactericidal kinetics were determined by releasing intracellular material in suspension and monitoring it at 260 nm using an ultraviolet (UV) spectrophotometer. A scanning electron microscope (SEM) was used to detect morphological alterations and physical damage to the cell membrane. Six compounds were isolated successfully: (1) myricetin (C15H10O8), (2) myricetin 3-O-rhamnoside (C21H20O12), (3) 5,7,8,3,4-pentahydroxyisoflavone (C15H10O7), (4) dihydroquercetin (C15H12O7), (5) 6,8-dihydroxykaempferol (C15H10O8), and (6) ellagic acid glucoside (C20H16O13). Among these bioactive compounds, C15H10O7 was found to have vigorous antimicrobial activity against Bacillus cereus (AS11846) and Staphylococcus aureus (CMCCB26003). A dose-dependent bactericidal kinetics with a higher degree of absorbance at optical density 260 (OD260) was observed when the bacterial suspension was incubated with C15H10O7 for 8 h. Furthermore, a scanning electron microscope study revealed physical damage to the cell membrane. In addition, the action mode of C15H10O7 was on the cell wall of the target microorganism. Together, these results suggest that C15H10O7 has vigorous antimicrobial activity and can be used as a potent antimicrobial agent in the food processing industry.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Ahmed M. Senan
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Labiba Khan
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesPir Mehr Ali Shah, Arid Agriculture University RawalpindiRawalpindiPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Dhama Kuldeep
- Division of PathologyICAR‐Indian Veterinary, Research InstituteIzatnagarIndia
| | - Niyazi A. S. Al‐Areqi
- Department of ChemistryFaculty of Applied ScienceTaiz UniversityTaizRepublic of Yemen
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
3
|
Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts 2021. [DOI: 10.3390/catal11070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The enantioselective synthesis of organic compounds is one of the great challenges in organic synthetic chemistry due to its importance for the acquisition of biologically active derivatives, e.g., pharmaceuticals, agrochemicals, and others. This is why biological systems are increasingly applied as tools for chiral compounds synthesis or modification. The use of whole cells of “wild-type” microorganisms is one possible approach, especially as some methods allow improving the conversion degrees and controlling the stereoselectivity of the reaction without the need to introduce changes at the genetic level. Simple manipulation of the culture conditions, the form of a biocatalyst, or the appropriate composition of the biotransformation medium makes it possible to obtain optically pure products in a cheap, safe, and environmentally friendly manner. This review contains selected examples of the influence of physicochemical factors on the stereochemistry of the biocatalytic preparation of enantiomerically pure compounds, which is undertaken through kinetically controlled separation of their racemic mixtures or reduction of prochiral ketones and has an effect on the final enantiomeric purity and enantioselectivity of the reaction.
Collapse
|
4
|
Umair M, Jabbar S, Sultana T, Ayub Z, Abdelgader SA, Xiaoyu Z, Chong Z, Fengxia L, Xiaomei B, Zhaoxin L. Chirality of the biomolecules enhanced its stereospecific action of dihydromyricetin enantiomers. Food Sci Nutr 2020; 8:4843-4856. [PMID: 32994946 PMCID: PMC7500803 DOI: 10.1002/fsn3.1766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 02/03/2023] Open
Abstract
The present study explores the effect of chirality of the biological macromolecules, its functional aspects, and its interaction with other food components. Dihydromyricetin (DHM) is a natural novel flavonol isolated from the vine tea (Ampelopsis grossedentata) leaves. However, limited progress in enantiopure separation methods of such compounds hinder in the development of enantiopure functional studies. This study is an attempt to develop a simple, accurate, and sensitive extraction method for the separation of the enantiopure DHM from vine tea leaves. In addition, the identification and purity of the extracted enantiopure (-)-DHM were further determined by the proton nuclear magnetic resonance (1H-NMR) and the carbon nuclear magnetic resonance (13C-NMR). The study further evaluates the antimicrobial activity of isolated (-)-DHM in comparison with racemate (+)-DHM, against selected foodborne pathogens, whereas the action mode of enantiopure (-)-DHM to increase the integrity and permeability of the bacterial cell membrane was visualized by confocal laser scanning microscopy using green fluorescence nucleic acid dye (SYTO-9) and propidium iodide (PI). Moreover, the morphological changes in the bacterial cell structure were observed through field emission scanning electron microscope. During analyzing the cell morphology of B. cereus (AS11846), it was confirmed that enantiopure (-)-DHM could increase the cell permeability that leads to the released of internal cell constituents and, thus, causes cell death. Therefore, the present study provides an insight into the advancement of enantiopure isolation along with its antimicrobial effect which could be served as an effective approach of biosafety.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research Centre (NARC)IslamabadPakistan
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zubaria Ayub
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | | | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Zhang Chong
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Fengxia
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Bie Xiaomei
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
5
|
Xu Y, Minhazul KAHM, Li X. The occurrence, enzymatic production, and application of ethyl butanoate, an important flavor constituent. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Karim A. H. M. Minhazul
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| |
Collapse
|
6
|
Yang R, Nie Z, Xu N, Zhao X, Wang Z, Luo H. Significantly Enhanced Synthesis of Aromatic Esters of Arbutin Catalyzed by Immobilized Lipase in Co-solvent Systems. Front Bioeng Biotechnol 2020; 8:273. [PMID: 32363180 PMCID: PMC7180213 DOI: 10.3389/fbioe.2020.00273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 11/14/2022] Open
Abstract
Highly efficient and regioselective synthesis of pharmacologically interesting aromatic esters of arbutin catalyzed by immobilized lipase from Penicillium expansum in co-solvent systems was successfully carried out. As compared to tetrahydrofuran solvent, the initial rate and substrate conversion of arbutin vanilylation were markedly enhanced in tetrahydrofuran-isopropyl ether (20%, v/v). Moreover, the effects of three reaction parameters (enzyme amount, temperature and substrate molar ratio of vinyl vanillic acid to arbutin) on 6′-O-vanilloyl-arbutin synthesis were scrutinized and the key process parameters were optimized using response surface methodology (RSM). The experimental data were fitted well to a second order polynomial model by using multiple regression analysis. The best combination of variables was 50°C, 93 U/mL and 11 for the reaction temperature, the enzyme amount and mole ratio of arbutin to vinyl vanilic acid, respectively, and which the reaction rate, substrate conversion and regioselectivity were as high as 8.2 mM/h, 93 and 99%. It was worth noting that a variety of aromatic esters of arbutin were obtained with much higher conversion (93–99%) at these optimal conditions.
Collapse
|
7
|
Peng F, Su HH, Ou XY, Ni ZF, Zong MH, Lou WY. Immobilization of Cofactor Self-Sufficient Recombinant Escherichia coli for Enantioselective Biosynthesis of ( R)-1-Phenyl-1,2-Ethanediol. Front Bioeng Biotechnol 2020; 8:17. [PMID: 32154222 PMCID: PMC7046757 DOI: 10.3389/fbioe.2020.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
(R)-1-phenyl-1,2-ethanediol is an important synthon for the preparation of β-adrenergic blocking agents. This study identified a (2R,3R)-butanediol dehydrogenase (KgBDH) from Kurthia gibsonii SC0312, which showed high enantioselectivity for production of (R)-1-phenyl-1,2-ethanediol by reduction of 2-hydroxyacetophenone. KgBDH was expressed in a recombinant engineered strain, purified, and characterized. It showed good catalytic activity at pH 6–8 and better stability in alkaline (pH 7.5–8) than an acidic environment (pH 6.0–7.0), providing approximately 73 and 88% of residual activity after 96 h at pH 7.5 and 8.0, respectively. The maximum catalytic activity was obtained at 45°C; nevertheless, poor thermal stability was observed at >30°C. Additionally, the examined metal ions did not activate the catalytic activity of KgBDH. A recombinant Escherichia coli strain coexpressing KgBDH and glucose dehydrogenase (GHD) was constructed and immobilized via entrapment with a mixture of activated carbon and calcium alginate via entrapment. The immobilized cells had 1.8-fold higher catalytic activity than that of cells immobilized by calcium alginate alone. The maximum catalytic activity of the immobilized cells was achieved at pH 7.5, and favorable pH stability was observed at pH 6.0–9.0. Moreover, the immobilized cells showed favorable thermal stability at 25–30°C and better operational stability than free cells, retaining approximately 55% of the initial catalytic activity after four cycles. Finally, 81% yields (195 mM product) and >99% enantiomeric excess (ee) of (R)-1-phenyl-1,2-ethanediol were produced within 12 h through a fed-batch strategy with the immobilized cells (25 mg/ml wet cells) at 35°C and 180 rpm, with a productivity of approximately 54 g/L per day.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hui-Hui Su
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiao-Yang Ou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zi-Fu Ni
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|