1
|
Yao YT, Zhang X, Wang CY, Zhang YH, Li DW, Yang WD, Li HY, Zou LG. Optimizing longifolene production in Yarrowia lipolytica via metabolic and protein engineering. Synth Syst Biotechnol 2025; 10:433-441. [PMID: 39925943 PMCID: PMC11803839 DOI: 10.1016/j.synbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Longifolene (C15H24) is a tricyclic sesquiterpene widely utilized in the cosmetics and fragrances due to its versatile applications. Traditional extraction methods from plants suffer from low titer and lengthy production cycles, while chemical synthesis is hampered by the compound's complex structure, leading to high costs and insufficient market supply. This study aimed to develop a microbial cell factory for enhanced longifolene production. The strategy involved integrating longifolene synthase from Pinus sylvestris (PsTPS) into Yarrowia lipolytica and employing multiple metabolic engineering approaches. Initially, key genes in the mevalonate (MVA) pathway were overexpressed to enhance longifolene precursor availability for longifolene biosynthesis. Subsequently, protein engineering techniques were applied to optimize PsTPS (tPsTPS) for improved catalytic efficiency. Furthermore, co-expression of molecular chaperones was implemented to enhance the synthesis and secretion of PsTPS. The introduction of the isopentenol utilization pathway (IUP) further augmented the supply of C5 substrate. By optimizing the culture conditions, including a reduction in culture temperature, the efflux of longifolene was increased, and the dissolved oxygen levels were enhanced to promote the growth of the strain. These collective efforts resulted culminated in the engineered strain Z03 achieving a noteworthy production level of 34.67 mg/L of longifolene in shake flasks. This study not only demonstrates the feasibility of enhancing sesquiterpene production in Y. lipolytica but also highlights the potential of microbial platforms in meeting industrial demands for complex natural products.
Collapse
Affiliation(s)
| | | | - Chen-Yu Wang
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Yu-He Zhang
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Li-Gong Zou
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| |
Collapse
|
2
|
de Vicente M, Gonzalez-Fernández C, Nicaud JM, Tomás-Pejó E. Turning residues into valuable compounds: organic waste conversion into odd-chain fatty acids via the carboxylate platform by recombinant oleaginous yeast. Microb Cell Fact 2025; 24:32. [PMID: 39881394 PMCID: PMC11776196 DOI: 10.1186/s12934-025-02647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA). High yeast OCFAs content was aimed by using two engineered strains (Y. lipolytica JMY7780 and JMY7782). Batch and two-step batch fermentations were performed, reaching high lipid content (40.8% w/w) and lipid yield (0.07 g/g) with JMY7782, which overexpresses propionyl-CoA synthase. Fed-batch fermentation with an acetic acid pulse after 24 h was also carried out to promote SCFAs consumption and OCFAs production. In this case, SCFAs consumption rate increased and JMY7782 was able to accumulate up to 60.4% OCFAs of the total lipids produced from food waste-derived carbon sources.
Collapse
Affiliation(s)
- Marta de Vicente
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain
- Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Cristina Gonzalez-Fernández
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain.
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, 47011, Valladolid, Spain.
| | - Jean Marc Nicaud
- Université Paris Saclay, INRAE, AgroParis Tech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain
| |
Collapse
|
3
|
Yu P, Wang J, Lao F, Shi H, Xu X, Wu J. Investigation on sweaty off-flavors in small mill sesame oil and its formation mechanism via molecular sensory science, preparative gas chromatography, and microbiomics. Food Chem 2025; 463:141224. [PMID: 39303469 DOI: 10.1016/j.foodchem.2024.141224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The distinctive and enjoyable aroma of small mill sesame oil (SMSO) originates from the aqueous extraction process. However, in the sedimentation stage in industrial production, when the external ambient temperature is elevated, unpleasant sweaty off-flavors may be present from an unknown source. Based on the odor screening and verification strategy, 76 volatile flavor compounds were identified in different SMSOs, and 3 key areas had a sweaty odor via gas chromatography olfactometry (GC-O) analysis. The validation experiment utilizing preparative gas chromatography (pre-GC) confirmed the sweaty off-flavors were butyric acid, 2-methylbutyric acid, and isobutyric acid, with odor activity values ranging from 1 to 100. Furthermore, microbiological investigations on sesame residues gathered during the sedimentation process at various temperatures revealed sweaty off-flavors were mostly attributed to the collaborative interaction of Lactobacillus, Yarrowia lipolytica, and butanoate 1-phosphotransferase. This study offers a fundamental theoretical foundation for enhancing the quality control and flavor of SMSO.
Collapse
Affiliation(s)
- Pei Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China.
| | - Jing Wang
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, People's Republic of China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China.
| | - Haiming Shi
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, People's Republic of China.
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai 200137, People's Republic of China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China.
| |
Collapse
|
4
|
Miranda SM, Belo I, Lopes M. Unraveling the Potential of Yarrowia lipolytica to Utilize Waste Motor Oil as a Carbon Source. J Fungi (Basel) 2024; 10:777. [PMID: 39590696 PMCID: PMC11596002 DOI: 10.3390/jof10110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
This study evaluated the potential of Y. lipolytica (CBS 2075 and DSM 8218) to grow in waste motor oil (WMO) and produce valuable compounds, laying the foundation for a sustainable approach to WMO management. Firstly, yeast strains were screened for their growth on WMO (2-10 g·L-1) in microplate cultures. Despite limited growth, the CBS 2075 strain exhibited comparable growth to control conditions (without WMO), while DSM 8218 growth increased 2- and 3-fold at 5 g·L-1 and 10 g·L-1 WMO, respectively. The batch cultures in the bioreactor confirmed the best performance of DSM 8218. A two-stage fed-batch strategy-growth phase in aliphatic hydrocarbons, followed by the addition of WMO (one pulse of 5 g·L-1 or five pulses of 1 g·L-1 WMO), significantly increased biomass production and WMO assimilation by both strains. In experiments with five pulses, CBS 2075 and DSM 8218 strains reached high proteolytic activities (593-628 U·L-1) and accumulated high quantities of intracellular lipids (1.3-1.7 g·L-1). Yeast lipids, mainly composed of oleic and linoleic acids with an unsaturated/saturated fraction > 59%, meet the EU biodiesel standard EN 14214, making them suitable for biodiesel production.
Collapse
Affiliation(s)
- Sílvia M. Miranda
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal (I.B.)
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal (I.B.)
- LABBELS–Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Marlene Lopes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal (I.B.)
- LABBELS–Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Miranda SM, Belo I, Lopes M. Yarrowia lipolytica growth, lipids, and protease production in medium with higher alkanes and alkenes. World J Microbiol Biotechnol 2024; 40:318. [PMID: 39261393 PMCID: PMC11390925 DOI: 10.1007/s11274-024-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Two strains of Yarrowia lipolytica (CBS 2075 and DSM 8218) were first studied in bioreactor batch cultures, under different controlled dissolved oxygen concentrations (DOC), to assess their ability to assimilate aliphatic hydrocarbons (HC) as a carbon source in a mixture containing 2 g·L-1 of each alkane (dodecane and hexadecane), and 2 g·L-1 hexadecene. Both strains grew in the HC mixture without a lag phase, and for both strains, 30 % DOC was sufficient to reach the maximum values of biomass and lipids. To enhance lipid-rich biomass and enzyme production, a pulse fed-batch strategy was tested, for the first time, with the addition of one or three pulses of concentrated HC medium. The addition of three pulses of the HC mixture (total of 24 g·L-1 HC) did not hinder cell proliferation, and high protease (> 3000 U·L-1) and lipids concentrations of 3.4 g·L-1 and 4.3 g·L-1 were achieved in Y. lipolytica CBS 2075 and DSM 8218 cultures, respectively. Lipids from the CBS 2075 strain are rich in C16:0 and C18:1, resembling the composition of palm oil, considered suitable for the biodiesel industry. Lipids from the DSM 8218 strain were predominantly composed of C16:0 and C16:1, the latter being a valuable monounsaturated fatty acid used in the pharmaceutical industry. Y. lipolytica cells exhibited high intrinsic surface hydrophobicity (> 69 %), which increased in the presence of HC. A reduction in surface tension was observed in both Y. lipolytica cultures, suggesting the production of extracellular biosurfactants, even at low amounts. This study marks a significant advancement in the valorization of HC for producing high-value products by exploring the hydrophobic compounds metabolism of Y. lipolytica.
Collapse
Affiliation(s)
- Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Marlene Lopes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Lei Y, Wang X, Sun S, He B, Sun W, Wang K, Chen Z, Guo Z, Li Z. A review of lipid accumulation by oleaginous yeasts: Culture mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170385. [PMID: 38364585 DOI: 10.1016/j.scitotenv.2024.170385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/18/2024]
Abstract
Microbial lipids have attracted considerable interest owing to their favorable environmental sustainability benefits. In laboratory-scale studies, the factors impacting lipid production in oleaginous yeasts, including culture conditions, nutrients, and low-cost substrates, have been extensively studied. However, there were several different modes of microbial lipid cultivation (batch culture, fed-batch culture, continuous culture, and other novel culture modes), making it difficult to comprehensively analyze impacting factors under different cultivation modes on a laboratory scale. And only few cases of microbial lipid production have been conducted at the pilot scale, which requires more technological reliability assessments and environmental benefit evaluations. Thus, this study summarized the different culture modes and cases of scale-up processes, highlighting the role of the nutrient element ratio in regulating culture mode selection and lipid accumulation. The cost distribution and environmental benefits of microbial lipid production by oleaginous yeasts were also investigated. Our results suggested that the continuous culture mode was recommended for the scale-up process because of its stable lipid accumulation. More importantly, exploring the continuous culture mode integrated with other efficient culture modes remained to be further investigated. In research on scale-up processes, low-cost substrate (organic waste) application and optimization of reactor operational parameters were key to increasing environmental benefits and reducing costs.
Collapse
Affiliation(s)
- Yuxin Lei
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Shushuang Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Bingyang He
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Wenjin Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Kexin Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhengxian Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhiling Guo
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
7
|
Manasa S, Tharak A, Venkata Mohan S. Biorefinery-centric ethanol and oleochemical production employing Yarrowia lipolytica and Pichia farinosa. BIORESOURCE TECHNOLOGY 2024; 394:130243. [PMID: 38142910 DOI: 10.1016/j.biortech.2023.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The research examined the capabilities of Yarrowia lipolytica (YL) and Pichia farinosa (PF) in converting sugars to ethanol and oleochemicals. Lipid, ethanol, protein yield and gene-expressions were analysed at different substrate concentrations (3 to 30 g/L) with glucose, food waste, and fermentation-effluent. Optimal results were obtained at 20 g/L using both synthetic carbon with 4.6 % of total lipid yield. Lauric and Caprylic acid dominance was noted in total lipid fractions. Protein accumulation (6 g/L) was observed in glucose system (20 g/L) indicating yeast strains potential as single-cell proteins (SCP). Fatty-acid desaturase (FAD12) and alcohol dehydrogenase (ADH) expressions were higher at optimum condition of YL (1.15 × 10-1, 3.8 × 10-2) and PF (5.8 × 10-2, 3.8 × 10-2) respectively. Maximum carbon reduction of 87 % depicted at best condition, aligning with metabolic yield. These findings highlights promising role of yeast as biorefinery biocatalyst.
Collapse
Affiliation(s)
- Sravya Manasa
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Miranda SM, Lopes M, Belo I. Exploring the use of hexadecane by Yarrowia lipolytica: Effect of dissolved oxygen and medium supplementation. J Biotechnol 2024; 380:29-37. [PMID: 38128617 DOI: 10.1016/j.jbiotec.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
This work aimed to evaluate the effect of medium composition and volumetric oxygen transfer coefficient (kLa) on Y. lipolytica growth and production of microbial lipids and enzymes from hexadecane. In the stirred tank bioreactor, increasing kLa from 11 h-1 to 132 h-1 improved the hexadecane assimilation rate, biomass concentration, and lipids synthesis (0.90 g·L-1). A cost-effective hexadecane-based medium supplemented with corn steep liquor and a low amount of ammonium sulfate boosted lipids production up to 2.1 g·L-1, composed of palmitic, palmitoleic, oleic, and linoleic acids. The unsaturated/saturated fraction was dependent on the C/N ratio. Lipids of Y. lipolytica CBS 2075 are promising feedstock for animal feed, food additives, or the biodiesel industry. Simultaneous synthesis of extracellular lipase and protease from hexadecane was observed, which is a new feature that was not previously reported. The highest enzyme activity was obtained at the highest C/N ratio conditions. These results open new perspectives on the application of Y. lipolytica-based cultures for the biotransformation of hexadecane-polluted streams into valuable compounds, fulfilling an interesting strategy towards the circular economy concept.
Collapse
Affiliation(s)
- Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Marlene Lopes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Robles-Iglesias R, Nicaud JM, Veiga MC, Kennes C. Integrated fermentative process for lipid and β-carotene production from acetogenic syngas fermentation using an engineered oleaginous Yarrowia lipolytica yeast. BIORESOURCE TECHNOLOGY 2023; 389:129815. [PMID: 37783238 DOI: 10.1016/j.biortech.2023.129815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
An engineered Yarrowia lipolytica strain was successfully employed to produce β-carotene and lipids from acetic acid, a product of syngas fermentation by Clostridium aceticum. The strain showed acetic acid tolerance up to concentrations of 20 g/L. Flask experiments yielded a peak lipid content of 33.7 % and β-carotene concentration of 13.6 mg/g under specific nutrient conditions. The study also investigated pH effects on production in bioreactors, revealing optimal lipid and β-carotene contents at pH 6.0, reaching 22.9 % and 44 mg/g, respectively. Lipid profiles were consistent across experiments, with C18:1 being the dominant compound at approximately 50 %. This research underscores a green revolution in bioprocessing, showing how biocatalysts can convert syngas, a potentially polluting byproduct, into valuable β-carotene and lipids with a Y. lipolytica strain.
Collapse
Affiliation(s)
- Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
10
|
Lu Y, Chen R, Huang L, Wang X, Chou S, Zhu J. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. J Biotechnol 2023; 374:114-121. [PMID: 37579845 DOI: 10.1016/j.jbiotec.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
As a renewable carbon source produced from organic wastes by acidogenic fermentation, volatile fatty acids (VFAs) are important intermediates in chemical and biological fields and beneficial to resource recovery and carbon neutrality. Maximizing VFA production by some strategies without additional chemicals is critical to increasing economic and environmental benefits. In this study, the effects of initial organic load (OL) on the performance of VFA production, variations of intermediate metabolites, and the thermogravimetric properties of potato peel waste (PPW) during batch acidogenic fermentation were studied. The results showed that the concentration of VFAs increased with the increase of initial OL, while the VFA yield decreased with the increase of initial OL. When the initial OL was in the range of 28.4 g VS/L-91.3 g VS/L, the fermentation type of PPW was butyric acid fermentation. The highest butyric acid proportion of 61.3% was achieved with the initial OL of 71.5 g VS/L. With the increase of initial OL, the proportion of acetic acid and the utilization rate of protein in the PPW decreased. VFAs were produced from proteins and carbohydrates in the early stage and mainly produced from carbohydrates in the later stage. The production efficiency of VFA was relatively high with the initial OL of 71.5 g VS/L, because more easily-biodegradable compounds were solubilized. The results showed that suitably increased initial OL could accelerate acidogenesis, reduce hydrolysis time, and increase the proportion of butyric acid. The findings in this work suggest that PPW is a promising feedstock for butyric acid biosynthesis and appropriate initial OL is beneficial to VFA production.
Collapse
Affiliation(s)
- Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Jiasixie Agronomy College of Weifang University of Science and Technology, Shouguang 262700, China
| | - Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Santao Chou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
11
|
Dias B, Fernandes H, Lopes M, Belo I. Yarrowia lipolytica produces lipid-rich biomass in medium mimicking lignocellulosic biomass hydrolysate. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12565-6. [PMID: 37191683 DOI: 10.1007/s00253-023-12565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
In recent years, lignocellulosic biomass has become an attractive low-cost raw material for microbial bioprocesses aiming the production of biofuels and other valuable chemicals. However, these feedstocks require preliminary pretreatments to increase their utilization by microorganisms, which may lead to the formation of various compounds (acetic acid, formic acid, furfural, 5-hydroxymethylfurfural, p-coumaric acid, vanillin, or benzoic acid) with antimicrobial activity. Batch cultures in microplate wells demonstrated the ability of Yarrowia strains (three of Y. lipolytica and one of Y. divulgata) to grow in media containing each one of these compounds. Cellular growth of Yarrowia lipolytica W29 and NCYC 2904 (chosen strains) was proven in Erlenmeyer flasks and bioreactor experiments where an accumulation of intracellular lipids was also observed in culture medium mimicking lignocellulosic biomass hydrolysate containing glucose, xylose, acetic acid, formic acid, furfural, and 5-HMF. Lipid contents of 35% (w/w) and 42% (w/w) were obtained in bioreactor batch cultures with Y. lipolytica W29 and NCYC 2904, respectively, showing the potential of this oleaginous yeast to use lignocellulosic biomass hydrolysates as feedstock for obtaining valuable compounds, such as microbial lipids that have many industrial applications. KEY POINTS: • Yarrowia strains tolerate compounds found in lignocellulosic biomass hydrolysate • Y. lipolytica consumed compounds found in lignocellulosic biomass hydrolysate • 42% (w/w) of microbial lipids was attained in bioreactor batch cultures.
Collapse
Affiliation(s)
- Bruna Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Helena Fernandes
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Marlene Lopes
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| | - Isabel Belo
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
12
|
Sun H, Yang M, Gao Z, Wang X, Wu C, Wang Q, Gao M. Economic and environmental evaluation for a closed loop of crude glycerol bioconversion to biodiesel. J Biotechnol 2023; 366:65-71. [PMID: 36907357 DOI: 10.1016/j.jbiotec.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Crude glycerol, a byproduct of biodiesel production, was utilized as a carbon source to produce microbial lipids by the oleaginous yeast Rhodotorula toruloides in this study. The maximum lipid production and lipid content were 10.56 g/L and 49.52%, respectively, by optimizing fermentation conditions. The obtained biodiesel met the standards of China, the United States, and the European Union. The economic value of biodiesel produced from crude glycerol increased by 48% compared with the sale of crude glycerol. In addition, biodiesel production from crude glycerol could reduce 11,928 tons of carbon dioxide emissions and 55 tons of sulfur dioxide emissions. This study provides a strategy for a closed loop of crude glycerol to biofuel and ensures sustainable and stable development of the biodiesel industries.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
13
|
Tumor tissue microorganisms are closely associated with tumor immune subtypes. Comput Biol Med 2023; 157:106774. [PMID: 36931204 DOI: 10.1016/j.compbiomed.2023.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Studies have found that different immune subtypes are present in the same tumor. Different tumor subtypes have different tumor microenvironments (TME). This means that the efficacy of immunotherapy in actual applications will, therefore, have different results. Existing tumor immune subtype studies have mostly focused on immune cells, stromal cells, genes and molecules without considering the presence of microbes. Some studies have shown that microflora can strongly promote many gastrointestinal cancers. The microbiome has, therefore, become an important biomarker and regulatory factor of cancer progression and therapeutic responses. In addition, the presence of microflora can strongly regulate the host immune system, indirectly affecting tumor growth. Taken together, it is important to study the relationships that develop among tumor tissue microorganisms, tumor immune subtype, and the TME. In this study, correlations between microbial abundance, immune cell infiltration, immune gene expression and tumor immune subtype were studied. To accomplish this, tissue microorganisms and immune cell ratios with significant differences between the different cancers were obtained by comparing 203 gastric cancer and intestinal cancer samples. Two immune subtypes of intestinal samples were obtained by K-means clustering algorithm and tissue microorganisms, immune cell ratios and immune-related genes with significant differences between different immune subtypes were screened through Wilcoxon rank sum test. The results showed that Clostridioides difficile, Aspergillus fumigatus, Yarrowia lipolytica, and Fusarium pseudograminearum were all closely associated with the identified tumor immune subtypes. Our open-source software is freely available from GitHub at https://github.com/gutmicrobes/IMM-subtype.git.
Collapse
|
14
|
Optimization of Solvent Extraction of Lipids from Yarrowia lipolytica towards Industrial Applications. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extraction of intracellular lipids of the oleaginous yeast Yarrowia lipolytica has been systematically studied aiming towards a sustainable extraction process for lipid recovery. Selection of suitable industrial (bulk) solvents and extraction parameters that lead to maximization of lipid recovery are significant issues to be addressed, with industrial applications motivating this study. Biomass from fermentation of Yarrowia lipolytica (MUCL 28849) was used in small laboratory tests to assess different solvent mixtures (i.e., methanol/hexane, isopropanol/hexane, and methanol/ethyl acetate), implementing a systematic design of experiments methodology to identify near-optimum values of key extraction variables (i.e., polar/non-polar ratio, vortex time, dry biomass/solvent ratio) in regard to lipid yield (g lipids/g dry biomass). The methanol/hexane mixture exhibited the highest extraction yield in a wide range of experimental conditions, resulting in the following optimum parameters: polar/non-polar ratio 3/5, vortex time 0.75 h, and dry biomass/solvent ratio 40. Extraction tests on a fifty-times-larger scale (in a Soxhlet apparatus employing the optimal extraction parameters) confirmed the optimization outcome by obtaining up to 27.6% lipids per dry biomass (L/DB), compared to 12.1% L/DB with the reference lipid extraction method employing chloroform/methanol. Assessment of lipid composition showed that unsaturated fatty acid recovery was favored by the methanol/hexane solvent. Fatty acid composition was not affected by the increase in Soxhlet reflux cycles, whilst the lipid yield was notably favored.
Collapse
|
15
|
Naveira-Pazos C, Veiga MC, Kennes C. Accumulation of lipids by the oleaginous yeast Yarrowia lipolytica grown on carboxylic acids simulating syngas and carbon dioxide fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127649. [PMID: 35868461 DOI: 10.1016/j.biortech.2022.127649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Volatile fatty acids (VFAs) can be considered as low-cost carbon substrates for lipid accumulation by oleaginous yeasts. This study demonstrates that a common mixture of VFAs, typically obtained from the anaerobic fermentation of C1-gases by some acetogenic bacteria, can be used in a second aerobic fermentation with the yeast Yarrowia lipolytica to obtain lipids as precursors of biodiesel. In the batch experiments, the preference of Yarrowia lipolytica W29 for acetic acid over butyric and caproic acids was demonstrated, with the highest consumption rate reaching 0.664 g/L·h. In the bioreactor experiments, the amount initial biomass inoculated, as well as the initial acid concentration, were found to have a significant influence on the process. Though the lipid content was relatively low, it can be optimized and further improved. Oleic, linoleic and palmitic acids accounted for about 80 % of the fatty acids in the lipids, which makes them suitable for biodiesel.
Collapse
Affiliation(s)
- Cecilia Naveira-Pazos
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008-La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008-La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008-La Coruña, Spain.
| |
Collapse
|
16
|
Pereira AS, Lopes M, Miranda SM, Belo I. Bio-oil production for biodiesel industry by Yarrowia lipolytica from volatile fatty acids in two-stage batch culture. Appl Microbiol Biotechnol 2022; 106:2869-2881. [PMID: 35394162 DOI: 10.1007/s00253-022-11900-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022]
Abstract
Microbial lipids-derived biodiesel is garnering much attention owing to its potential to substitute diesel fuel. In this study, lipid accumulation by Yarrowia lipolytica from volatile fatty acids (VFAs) was studied in a lab-scale stirred tank bioreactor. In batch cultures, Y. lipolytica NCYC 2904 was able to grow in 18 g·L-1 of VFAs (acetate, propionate, and butyrate), and the addition of a co-substrate (glucose) led to a fivefold improvement in lipid concentration. Furthermore, the two-stage batch culture (growth phase in glucose (1st stage) followed by a lipogenic phase in VFAs (2nd stage)) was the best strategy to obtain the highest lipid content in the cells (37%, w/w), with aeration conditions that kept dissolved oxygen concentration between 40% and 50% of saturation during the lipogenic phase. The estimated fuel properties of biodiesel produced from Y. lipolytica NCYC 2904 lipids are comparable with those of the biodiesel produced from vegetable oils and are in accordance with the international standards (EN 14214 and ASTM D6751). The cultivation strategies herein devised enable a sustainable, eco-friendly, and economical production of microbial lipids, based on feedstocks such as VFAs that can be derived from the acidogenic fermentation of organic wastes. KEY POINTS: • Addition of glucose to VFAs enhances lipids in Y. lipolytica in batch cultures • Two-stage batch culture - growth in glucose followed by VFAs pulse - rises lipids • Dissolved oxygen of 40-50% of saturation is crucial at the lipogenic phase.
Collapse
Affiliation(s)
- Ana S Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Marlene Lopes
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sílvia M Miranda
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Belo
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Chen L, Yan W, Qian X, Chen M, Zhang X, Xin F, Zhang W, Jiang M, Ochsenreither K. Increased Lipid Production in Yarrowia lipolytica from Acetate through Metabolic Engineering and Cosubstrate Fermentation. ACS Synth Biol 2021; 10:3129-3138. [PMID: 34714052 DOI: 10.1021/acssynbio.1c00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconversion of acetate, a byproduct generated in industrial processes, into microbial lipids using oleaginous yeasts offers a promising alternative for the economic utilization of acetate-containing waste streams. However, high acetate concentrations will inhibit microbial growth and metabolism. In this study, the acetate utilization capability of Yarrowia lipolytica PO1f was successively improved by overexpressing the key enzyme of acetyl-CoA synthetase (ACS), which resulted in an accumulation of 9.2% microbial lipids from acetate in shake flask fermentation. By further overexpressing the second key enzymes of acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FAS) in Y. lipolytica, the lipid content was increased to 25.7% from acetate. Finally, the maximum OD600 of 29.2 and a lipid content of 41.7% were obtained with the engineered strain by the adoption of cosubstrate (glycerol and acetate) fed-batch fermentation, which corresponded to an increase of 68 and 95%, respectively. These results presented a promising strategy for economic and efficient microbial lipid production from the waste acetate.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Minjiao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Xiaoyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Valorization of waste frying oil to lipopeptide biosurfactant by indigenous Bacillus licheniformis through co-utilization in mixed substrate fermentation. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|