1
|
Ebbing T, Kopp L, Frick K, Simon T, Würtz B, Pfannstiel J, Schmid-Staiger U, Bischoff SC, Tovar GEM. Exploring Phaeodactylum tricornutum for Nutraceuticals: Cultivation Techniques and Neurotoxin Risk Assessment. Mar Drugs 2025; 23:58. [PMID: 39997182 PMCID: PMC11857130 DOI: 10.3390/md23020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
This study investigates the potential of the diatom Phaeodactylum tricornutum (PT) as a sustainable and nutritionally valuable food source, focusing on its ability to produce bioactive compounds such as eicosapentaenoic acid, fucoxanthin, chrysolaminarin (CRY) and proteins. PT was cultivated in a flat-plate airlift photobioreactor (FPA-PBR) illuminated with LEDs from two sides. The study aimed to monitor and minimize β-methylamino-L-alanine (BMAA) levels to address safety concerns. The data showed that the selected FPA-PBR setup was superior in biomass and EPA productivity, and CRY production was reduced. No BMAA was detected in any biomass sample during cultivation. By adjusting the cultivation conditions, PT biomass with different compositional profiles could be produced, enabling various applications in the food and health industries. Biomass from nutrient-repleted conditions is rich in EPA and Fx, with nutritional and health benefits. Biomass from nutrient-depleted conditions accumulated CRY, which can be used as dietary fiber. These results highlight the potential of PT as a versatile ingredient for human consumption and the effectiveness of FPA-PBRs with artificial lighting in producing high-quality biomass. This study also provides the basis for future research to optimize photobioreactor conditions to increase production efficiency and to tailor the biomass profiles of PT for targeted health-promoting applications.
Collapse
Affiliation(s)
- Tobias Ebbing
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (K.F.); (T.S.); (U.S.-S.); (G.E.M.T.)
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
| | - Lena Kopp
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.K.); (S.C.B.)
| | - Konstantin Frick
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (K.F.); (T.S.); (U.S.-S.); (G.E.M.T.)
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
| | - Tabea Simon
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (K.F.); (T.S.); (U.S.-S.); (G.E.M.T.)
| | - Berit Würtz
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottlie-Zeller-Weg 2, 70599 Stuttgart, Germany; (B.W.); (J.P.)
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottlie-Zeller-Weg 2, 70599 Stuttgart, Germany; (B.W.); (J.P.)
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (K.F.); (T.S.); (U.S.-S.); (G.E.M.T.)
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.K.); (S.C.B.)
| | - Günter E. M. Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (K.F.); (T.S.); (U.S.-S.); (G.E.M.T.)
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Salazar J, Santana-Sánchez A, Näkkilä J, Sirin S, Allahverdiyeva Y. Complete N and P removal from hydroponic greenhouse wastewater by Tetradesmus obliquus: A strategy for algal bioremediation and cultivation in Nordic countries. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Wan Mahari WA, Wan Razali WA, Manan H, Hersi MA, Ishak SD, Cheah W, Chan DJC, Sonne C, Show PL, Lam SS. Recent advances on microalgae cultivation for simultaneous biomass production and removal of wastewater pollutants to achieve circular economy. BIORESOURCE TECHNOLOGY 2022; 364:128085. [PMID: 36220529 DOI: 10.1016/j.biortech.2022.128085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are known for containing high value compounds and its significant role in sequestering carbon dioxide. This review mainly focuses on the emerging microalgae cultivation technologies such as nanomaterials technology that can improve light distribution during microalgae cultivation, attached cultivation and co-cultivation approaches that can improve growth and proliferation of algal cells, biomass yield and lipid accumulation in microalgal. This review includes a comprehensive discussion on the use of microbubbles technology to enhance aerated bubble capacity in photobioreactor to improve microalgal growth. This is followed by discussion on the role of microalgae as phycoremediation agent in removal of contaminants from wastewater, leading to better water quality and high productivity of shellfish. The review also includes techno-economic assessment of microalgae biorefinery technology, which is useful for scaling up the microalgal biofuel production system or integrated microalgae-shellfish cultivation system to support circular economy.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wan Aizuddin Wan Razali
- Faculty of Fisheries & Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hidayah Manan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Mursal Abdulkadir Hersi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia
| | - Wee Cheah
- Insitute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor, Malaysia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Henan 450002, Zhengzhou, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Terengganu 21030, Kuala Nerus, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
4
|
Optimisation of Biomass Production and Nutritional Value of Two Marine Diatoms (Bacillariophyceae), Skeletonema costatum and Chaetoceros calcitrans. BIOLOGY 2022; 11:biology11040594. [PMID: 35453793 PMCID: PMC9024967 DOI: 10.3390/biology11040594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary One of the key constraints that is associated with the production of microalgae biomass and products, is the low yields that are associated with high production costs in microalgae cultivation units. Therefore, the aim of the present work was to improve the biomass productivity of two high-value diatom species, Skeletonema costatum and Chaetoceros calcitrans. To do so, the culture medium that was supplied to the cultures was optimised in a stepwise process, regarding the nutrient’s silicate, nitrate, phosphorus, iron, and micronutrients. For both diatoms, the results that were obtained revealed a significant increase in biomass productivity as well as an improved biochemical profile regarding increased omega-3 fatty acids contents. With this work, the optimise culture media was established for each diatom, thus providing a strategy for lower production costs that were reflected in higher productivities with higher biomass quality. Ultimately this will help improve the application of S. costatum and C. calcitrans in the aquaculture and nutraceutical industries. Abstract S. costatum and C. calcitrans are two cosmopolitan high-value centric diatoms, with a rich nutritional profile. The following work optimised the culture medium of S. costatum and C. calcitrans cultures, respectively, in a stepwise process as follows: 2.4 mM and 1.2 mM of silicate, 4 mM of nitrate, 100 µM of phosphate, 20 and 80 µM iron, and 0.5 mL L−1 of micronutrients. The results that were obtained revealed an increase in biomass productivity with a 1.8- and 3.2-fold increase in biomass that was produced by S. costatum and C. calcitrans, respectively. The biochemical profile showed an increase in high-value PUFAs such as 2.6-fold and 2.3-fold increase in EPA for S. costatum and C. calcitrans, respectively, whilst a 2.6-fold increase in DHA was detected in S. costatum cultures. The present work provides the basic tools for the industrial cultivation of S. costatum and C. calcitrans with enhanced productivity as well as improved biomass quality, two factors which are highly relevant for a more effective application of these diatoms to aquaculture and nutraceutical production.
Collapse
|