Komkhum T, Sema T, Rehman ZU, In-Na P. Carbon dioxide removal from triethanolamine solution using living microalgae-loofah biocomposites.
Sci Rep 2025;
15:7247. [PMID:
40021661 PMCID:
PMC11871227 DOI:
10.1038/s41598-025-90855-x]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
Nowadays, the climate change crisis is an urgent matter in which carbon dioxide (CO2) is a major greenhouse gas contributing to global warming. Amine solvents are commonly used for CO2 capture with high efficiency and absorption rates. However, solvent regeneration consumes an extensive amount of energy. One of alternative approaches is amine regeneration through microalgae. Recently, living biocomposites, intensifying traditional suspended cultivation, have been developed. With this technology, immobilizing microalgae on biocompatible materials with binder outperformed the suspended system in terms of CO2 capture rates. In this study, living microalgae-loofah biocomposites with immobilized Scenedesmus acuminatus TISTR 8457 using 5%v/v acrylic medium were tested to remove CO2 from CO2-rich triethanolamine (TEA) solutions. The test using 1 M TEA at various CO2 loading ratios (0.2, 0.4, 0.6, and 0.8 mol CO2/mol TEA) demonstrated that the biocomposites achieved CO2 removal rates 3 to 5 times higher than the suspended cell system over 28 days, with the highest removal observed at the 1 M with 0.4 mol CO2/mol TEA (4.34 ± 0.20 gCO2/gbiomass). This study triggers a new exploration of integration between biological and chemical processes that could elevate the traditional amine-based CO2 capture capabilities. Nevertheless, pilot-scale investigations are necessary to confirm the biocomposites's efficiency.
Collapse