1
|
Zhang D, Li J, Chen X, Zhang S, Wu B, Fan J. A new combination approach to extracellular production of 5-aminolevulinic acid for purification and application in alleviating cadmium-induced oxidative stress in maize. Protein Expr Purif 2025; 232:106736. [PMID: 40349745 DOI: 10.1016/j.pep.2025.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
5-Aminolevulinic acid (ALA) is widely applied in agriculture, animal husbandry, medicine, and often manufactured in Escherichia coli for overexpressing ALA synthase (ALAS) from α-proteobacteria. For enhancing extracellular ALA production, several approaches have been exploited. Here, we developed and identified a new combination strategy to increase ALA production in E. coli, including selection of the negatively-charged peptide tag as a C-terminal fusion partner for increasing soluble production of the ALAS codon variant from Rhodobacter sphaeroides, mutation of certain residues to increase the ALAS variant activity, optimization of the signal sequences to facilitate ALA secretion, down-regulation of the hemB to inhibit ALA transformation in one plasmid expression system, and supply of 4 mM dithiothreitol to the culture to increase cells tolerant to the oxidative stress. Under the specified cultural conditions, ALA yield was up to 3.2 g/L in flash flasks. Compared with the added cadmium-induced stress, simultaneous supply of purified ALA improved maize seedlings growth, decreased contents of malondialdehyde and hydrogen peroxide, and increased peroxidase activity, contents of chlorophylls and proline.
Collapse
Affiliation(s)
- Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Jinjing Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Baokang Wu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| |
Collapse
|
2
|
Haggerty K, Cantlay S, Young E, Cashbaugh MK, Delatore Iii EF, Schreiber R, Hess H, Komlosi DR, Butler S, Bolon D, Evangelista T, Hager T, Kelly C, Phillips K, Voellinger J, Shanks RMQ, Horzempa J. Identification of an N-terminal tag (580N) that improves the biosynthesis of fluorescent proteins in Francisella tularensis and other Gram-negative bacteria. Mol Cell Probes 2024; 74:101956. [PMID: 38492609 PMCID: PMC11000650 DOI: 10.1016/j.mcp.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of Francisella tularensis) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in F. tularensis markedly improved detection of this protein. We therefore hypothesized that transcripts containing 580N may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of emGFPFt that had been codon-optimized for F. tularensis, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing emGFP with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in F. tularensis. These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in F. tularensis. Interestingly, expression of non-optimized 580N-emGFP produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in Escherichia coli and Klebsiella pneumoniae bacteria, 580N-emGFP produced increased green fluorescence compared to untagged emGFP (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria.
Collapse
Affiliation(s)
- Kristen Haggerty
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Stuart Cantlay
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Emily Young
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Mariah K Cashbaugh
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Elio F Delatore Iii
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Rori Schreiber
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Hayden Hess
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Daniel R Komlosi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Butler
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Dalton Bolon
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Theresa Evangelista
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Takoda Hager
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Claire Kelly
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Katherine Phillips
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Jada Voellinger
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph Horzempa
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, USA.
| |
Collapse
|