1
|
Liu XM, Yang L, Yang QB. Advanced Progress of Histone Deacetylases in Rheumatic Diseases. J Inflamm Res 2024; 17:947-955. [PMID: 38370467 PMCID: PMC10870932 DOI: 10.2147/jir.s447811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.
Collapse
Affiliation(s)
- Xue-Mei Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Liu Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Qi-Bin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| |
Collapse
|
2
|
Sheng S, Wang X, Liu X, Hu X, Shao Y, Wang G, Mao D, Li C, Chen B, Chen X. The role of resveratrol on rheumatoid arthritis: From bench to bedside. Front Pharmacol 2022; 13:829677. [PMID: 36105210 PMCID: PMC9465647 DOI: 10.3389/fphar.2022.829677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by symmetrical polyarthritis as its main clinical manifestation. Uncontrolled RA eventually leads to joint deformities and loss of function. Currently, the pathogenesis of RA remains under discussion, and RA treatment is still at the bottleneck stage. Resveratrol has long been regarded as a potential antioxidant drug for RA treatment. Currently, resveratrol is considered to exert therapeutic effects on RA by activating silent information regulator 1 (SIRT1) and its downstream pathways. There is notable crosstalk between the SIRT1 and NF-κB pathways, and these pathways, which play an essential role in the development of RA, are unexpectedly linked to the influence of resveratrol. Based on recent studies of almost all the pathways that resveratrol can affect, this review summarizes a regulatory chain of core components that cover multiple tracks. We also list the effects of resveratrol on immune cells and other subtle controls, which can help clinicians understand the known mechanism of resveratrol and better treat patients with RA.
Collapse
Affiliation(s)
- Shuyan Sheng
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xin Liu
- School of pharmacy, Anhui Medical University, Hefei, China
| | - Xinyang Hu
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yubao Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei, China
| | - Gaoyuan Wang
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deshen Mao
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Conghan Li
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
- *Correspondence: Bangjie Chen, ; Xiaoyu Chen,
| | - Xiaoyu Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei, China
- *Correspondence: Bangjie Chen, ; Xiaoyu Chen,
| |
Collapse
|
3
|
Wu YJ, Fang WJ, Pan S, Zhang SS, Li DF, Wang ZF, Chen WG, Yin Q, Zuo J. Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis. Int Immunopharmacol 2021; 101:108175. [PMID: 34689102 DOI: 10.1016/j.intimp.2021.108175] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease. Synovial hyperplasia and persistent inflammation serve as its typical pathological manifestations, which ultimately lead to joint destruction and function loss. Both clinical observations and metabolomics studies have revealed the prevalence of metabolic disorders in RA. In inflammatory immune microenvironments, energy metabolism is profoundly changed. Increasingly evidences suggest that this abnormality is involved in the occurrence and development of RA-related inflammation. Unsurprisingly, many energy metabolism sensors have been confirmed with immunoregulatory properties. As a representative, silent information regulator type 1 (Sirt1) controls many aspects of immune cells, such as cell lifespan, polarization, and secretion by functioning as a transcriptional regulator. Because of the profound clinical implication, researches on Sirt1 in the regulation of energy metabolism and immune functions under RA conditions have gradually gained momentum. This signaling balances glycolysis, lipid metabolism and insulin secretion orchestrating with other metabolism sensors, and consequently affects immune milieu through a so-called metabolism-immune feedback mechanism. This article reviews the involvement of Sirt1 in RA by discussing its impacts on energy metabolism and immune functions, and specially highlights the potential of Sirt1-targeting anti-rheumatic regimens. It also provides a theoretical basis for clarifying the mystery about the high incidence of metabolic complications in RA patients and identifying new anti-rheumatic reagents.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China; Xin'An Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Wen-Juan Fang
- The Second People's Hospital of Hefei, Heifei, China
| | - Shu Pan
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China; Xin'An Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Sa-Sa Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China; Xin'An Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Dan-Feng Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhong-Fang Wang
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wen-Gang Chen
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qin Yin
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.
| |
Collapse
|
4
|
Pasquereau S, Totoson P, Nehme Z, Abbas W, Kumar A, Verhoeven F, Prati C, Wendling D, Demougeot C, Herbein G. Impact of glucocorticoids on systemic sirtuin 1 expression and activity in rats with adjuvant-induced arthritis. Epigenetics 2020; 16:132-143. [PMID: 32615849 DOI: 10.1080/15592294.2020.1790789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The class III histone deacetylase sirtuin 1 (SIRT1) plays a pivotal role in numerous biological and physiological functions, including inflammation. An association between SIRT1 and proinflammatory cytokines might exist. In addition to their important role in inflammation associated with rheumatoid arthritis (RA), proinflammatory cytokines mediate the development of systemic effects. Here, we evaluated systemic SIRT1 expression and enzymatic activity, in peripheral blood mononuclear cells (PBMCs) and in liver isolated from rats with adjuvant-induced arthritis (AIA), treated or not with low or high doses of glucocorticoids (GCs). We also measured the production of tumour necrosis factor alpha (TNF) and interleukin-1 beta (IL-1 beta) in PBMCs and liver. We found that SIRT1 expression and activity increased in PBMCs of AIA rats compared to healthy controls and decreased under GC treatment. Similarly, we observed an increased SIRT1 activity in the liver of AIA rats compared to healthy controls which decreased under high doses of GCs. We also found an increase in IL-1 beta and TNF levels in the liver of AIA rats compared to healthy controls, which decreased under high doses of GC. We did not observe a significant correlation between SIRT1 activity and proinflammatory cytokine production in PBMC or liver. In contrast, a strong positive correlation was found between the liver levels of TNF and IL-1 beta (rho=0.9503, p=7.5x10-21). Our results indicate that increased inflammation in AIA rats compared to healthy control is accompanied by an increased SIRT1 activity in both PBMCs and liver, which could be decreased under GC treatment.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Perle Totoson
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Wasim Abbas
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Amit Kumar
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Frank Verhoeven
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Clément Prati
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Daniel Wendling
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Céline Demougeot
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Virology, CHRU Besançon , Besançon, France
| |
Collapse
|
5
|
Gabay O, Clouse KA. Epigenetics of cartilage diseases. Joint Bone Spine 2016; 83:491-4. [DOI: 10.1016/j.jbspin.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/28/2015] [Indexed: 02/06/2023]
|
6
|
Wu X, Cao N, Fenech M, Wang X. Role of Sirtuins in Maintenance of Genomic Stability: Relevance to Cancer and Healthy Aging. DNA Cell Biol 2016; 35:542-575. [DOI: 10.1089/dna.2016.3280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiayu Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Michael Fenech
- Genome Health and Personalized Nutrition, Commonwealth Scientific and Industrial Research Organization Food and Nutrition, Adelaide, South Australia, Australia
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Chalan P, van den Berg A, Kroesen BJ, Brouwer L, Boots A. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr Aging Sci 2016. [PMID: 26212057 PMCID: PMC5388800 DOI: 10.2174/1874609808666150727110744] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age is the most important risk factor for the development of infectious diseases, cancer and chronic inflammatory diseases including rheumatoid arthritis (RA). The very act of living causes damage to cells. A network of molecular, cellular and physiological maintenance and repair systems creates a buffering capacity against these damages. Aging leads to progressive shrinkage of the buffering capacity and increases vulnerability. In order to better understand the complex mammalian aging processes, nine hallmarks of aging and their interrelatedness were recently put forward. RA is a chronic autoimmune disease affecting the joints. Although RA may develop at a young age, the incidence of RA increases with age. It has been suggested that RA may develop as a consequence of premature aging (immunosenescence) of the immune system. Alternatively, premature aging may be the consequence of the inflammatory state in RA. In an effort to answer this chicken and egg conundrum, we here outline and discuss the nine hallmarks of aging, their contribution to the pre-aged phenotype and the effects of treatment on the reversibility of immunosenescence in RA.
Collapse
Affiliation(s)
| | | | | | | | - Annemieke Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
8
|
Myeloid deletion of SIRT1 suppresses collagen-induced arthritis in mice by modulating dendritic cell maturation. Exp Mol Med 2016; 48:e221. [PMID: 26987484 PMCID: PMC4892877 DOI: 10.1038/emm.2015.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/22/2015] [Accepted: 11/29/2015] [Indexed: 12/29/2022] Open
Abstract
The type III histone deacetylase silent information regulator 1 (SIRT1) is an enzyme that is critical for the modulation of immune and inflammatory responses. However, the data on its role in rheumatoid arthritis (RA) are limited and controversial. To better understand how SIRT1 regulates adaptive immune responses in RA, we evaluated collagen-induced arthritis (CIA) in myeloid cell-specific SIRT1 knockout (mSIRT1 KO) and wild-type (WT) mice. Arthritis severity was gauged on the basis of clinical, radiographic and pathologic scores. Compared with their WT counterparts, the mSIRT1 KO mice exhibited less severe arthritis, which was less destructive to the joints. The expression levels of inflammatory cytokines, matrix metalloproteinases and ROR-γT were also reduced in the mSIRT1 KO mice compared with the WT mice and were paralleled by reductions in the numbers of Th1 and Th17 cells and CD80- or CD86-positive dendritic cells (DCs). In addition, impaired DC maturation and decreases in the Th1/Th17 immune response were observed in the mSIRT1 KO mice. T-cell proliferation was also investigated in co-cultures with antigen-pulsed DCs. In the co-cultures, the DCs from the mSIRT1 KO mice showed decreases in T-cell proliferation and the Th1/Th17 immune response. In this study, myeloid cell-specific deletion of SIRT1 appeared to suppress CIA by modulating DC maturation. Thus, a careful investigation of DC-specific SIRT1 downregulation is needed to gauge the therapeutic utility of agents targeting SIRT1 in RA.
Collapse
|
9
|
Wendling D, Delattre E, Abbas W, Guillot X, Toussirot E, Herbein G. Sirt-1 activity in PBMC from patients with spondyloarthritis. Joint Bone Spine 2015; 82:210-1. [DOI: 10.1016/j.jbspin.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
10
|
Wendling D, Abbas W, Godfrin-Valnet M, Kumar A, Guillot X, Khan KA, Vidon C, Coquard L, Toussirot E, Prati C, Herbein G. Dysregulated serum IL-23 and SIRT1 activity in peripheral blood mononuclear cells of patients with rheumatoid arthritis. PLoS One 2015; 10:e0119981. [PMID: 25799392 PMCID: PMC4370395 DOI: 10.1371/journal.pone.0119981] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
Sirtuin 1 (Sirt1) is a class III histone deacetylase (HDAC) that modulates gene expression and is involved in the regulation of proinflammatory cytokines. Interleukin-23 (IL-23) is produced by activated macrophages and dendritic cells and could fuel the progression of rheumatoid arthritis (RA). The goal of our study was to evaluate serum IL-23 levels and both Sirt1 activity and expression in peripheral blood mononuclear cells (PBMCs) in patients with RA compared to healthy controls (HC) and to determine the relationship between Sirt1 activity/expression and IL-23 levels. We assessed apoptosis in PBMCs of RA patients and its association with Sirt1 expression and serum IL-23. Serum IL-23 levels were increased in RA patients in comparison with controls. We found a positive correlation between the levels of serum IL-23 and serum IL-6 in RA patients. Decreased cytoplasmic Sirt1 activity was observed in RA patients with severe disease compared to HC. The expression of Sirt1 protein was significantly decreased in PBMCs of RA patients compared to HC using western blotting. Serum IL-23 levels correlated positively with the cytoplasmic Sirt1 activity in RA patients. Apoptosis rate of PBMCs isolated from RA patients was increased compared to HC and correlated negatively with the expression of Sirt1 protein and serum IL-23 levels. Levels of serum IL-23 and Sirt1 activity and expression were disturbed in RA parallel to increased PBMC apoptosis. Our findings might provide the rationale for the development of new therapeutic approaches in RA.
Collapse
Affiliation(s)
- Daniel Wendling
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Wasim Abbas
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Marie Godfrin-Valnet
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Amit Kumar
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Xavier Guillot
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Kashif Aziz Khan
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Claire Vidon
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Laurie Coquard
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Eric Toussirot
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
- Clinical Investigation Biotherapy Center506, Centre Hospitalier Régional Universitaire, Besançon, France
- Department of Therapeutics, University of Franche Comté, Besançon, France
| | - Clément Prati
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
- Department of Virology, Centre Hospitalier Régional Universitaire, Besançon, France
- Structure Fédérative de Recherche 4234, University of Franche-Comté, Besançon, France
- * E-mail:
| |
Collapse
|