1
|
Tim B, Konował E, Modrzejewska-Sikorska A. Starch Sodium Octenylsuccinate as a New Type of Stabilizer in the Synthesis of Catalytically Active Gold Nanostructures. Int J Mol Sci 2024; 25:5116. [PMID: 38791154 PMCID: PMC11120886 DOI: 10.3390/ijms25105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Here, starch derivatives, i.e., sodium starch octenylsuccinate (OSA starch, hereinafter referred to as OSA), were employed as both reducing and stabilizing agents for the unique, inexpensive, and simple synthesis of gold nanoparticles (OSA-AuNPs) in an aqueous solution with gold salt. The obtained OSA-AuNPs were characterized by UV-vis spectrophotometry, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic activity of the obtained gold colloids was studied in the reduction of organic dyes, including methylene blue (C.I. Basic Blue 9) and rhodamine B (C.I. Basic Violet 10), and food coloring, including tartrazine (E102) and azorubine (E122), by sodium borohydride. Moreover, OSA-AuNPs were utilized as signal amplifiers in surface-enhanced Raman spectroscopy. The obtained results confirmed that gold nanoparticles can be used as effective catalysts in reduction reactions of selected organic dyes, as well as signal enhancers in the SERS technique.
Collapse
Affiliation(s)
- Beata Tim
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| | - Emilia Konował
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | | |
Collapse
|
2
|
Liu Q, Lyu X, Chen Q, Qin Y, Wang X, Li C, Fang Z, Bao H. Fast synthesis of nanoporous Cu/Ag bimetallic triangular nanoprisms via galvanic replacement for efficient 4-nitrophenol reduction. NANOSCALE 2024. [PMID: 38440800 DOI: 10.1039/d3nr05968e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
We report the synthesis of nanoporous Cu/Ag bimetallic triangular nanoprisms (BTNPs) using a galvanic replacement method. Based on ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS) analyses, the structure of Cu/Ag BTNPs was characterized. The prepared Cu/Ag BTNPs exhibited excellent catalytic activity and good cycling stability for the reduction of 4-nitrophenol (4-NP) due to the synergistic effect between Cu and Ag elements. The kinetic rate constant (k) and turnover frequency (TOF) values reached 331 × 10-3 s-1 and 500 × 10-3 s-1, respectively, which were higher than those of previously reported Cu, Ag, Au, Cu/Ag or Cu/Au-based catalysts. We hope that the development of promising routes for high-quality BTNPs can broaden their applications in catalysis and environmental sustainability.
Collapse
Affiliation(s)
- Qiang Liu
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Xuelian Lyu
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Qiusui Chen
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Yanmin Qin
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Xing Wang
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Chen Li
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Zheng Fang
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Haifeng Bao
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
3
|
Khan MSJ, Mohd Sidek L, Kamal T, Khan SB, Basri H, Zawawi MH, Ahmed AN. Catalytic innovations: Improving wastewater treatment and hydrogen generation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120228. [PMID: 38377746 DOI: 10.1016/j.jenvman.2024.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
The effective reduction of hazardous organic pollutants in wastewater is a pressing global concern, necessitating the development of advanced treatment technologies. Pollutants such as nitrophenols and dyes, which pose significant risks to both human and aquatic health, making their reduction particularly crucial. Despite the existence of various methods to eliminate these pollutants, they are not without limitations. The utilization of nanomaterials as catalysts for chemical reduction exhibits a promising alternative owing to their distinguished catalytic activity and substantial surface area. For catalytically reducing the pollutants NaBH4 has been utilized as a useful source for it because it reduces the pollutants quiet efficiently and it also releases hydrogen gas as well which can be used as a source of energy. This paper provides a comprehensive review of recent research on different types of nanomaterials that function as catalysts to reduce organic pollutants and also generating hydrogen from NaBH4 methanolysis while also evaluating the positive and negative aspects of nanocatalyst. Additionally, this paper examines the features effecting the process and the mechanism of catalysis. The comparison of different catalysts is based on size of catalyst, reaction time, rate of reaction, hydrogen generation rate, activation energy, and durability. The information obtained from this paper can be used to steer the development of new catalysts for reducing organic pollutants and generation hydrogen by NaBH4 methanolysis.
Collapse
Affiliation(s)
| | - Lariyah Mohd Sidek
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hidayah Basri
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Mohd Hafiz Zawawi
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Ali Najah Ahmed
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Malaysia.
| |
Collapse
|
4
|
Self-assembly on natural cellulose: Towards high-efficient catalysts. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2022.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Han Y, Li J, Zhang X, Xia F, Dai Y. Reversible down-regulation and up-regulation of catalytic activity of poly( N-isopropylacrylamide)-anchored gold nanoparticles. NANOTECHNOLOGY 2022; 33:165601. [PMID: 34986462 DOI: 10.1088/1361-6528/ac487b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Regulating catalytic activity plays an important role in further optimizing and developing multifunctional catalysts with high selectivity and high activity. Reversible dual regulation of catalytic activity has always been a challenging task. Here, we prepared poly(N-isopropylacrylamide)-anchored gold nanoparticles (AuNP@CDs-Azo-PNIPAM) through host-guest interaction of cyclodextrin capped gold nanoparticles (AuNP@CDs) and azobenzene-terminated poly(N-isopropylacrylamide) (Azo-PNIPAM). Azo-PNIPAM as thermal and light responsive ligand allows reversible dual regulation of catalytic activity. When the temperature is higher than the lowest critical solution temperature, the PNIPAM chain shrinks rapidly, increasing the steric hindrance around AuNPs and reducing the catalytic activity. Under ultraviolet light irradiation,cis-azobenzene disassembles from cyclodextrin and the number of surface active sites of AuNPs increases, which improves the catalytic activity. The reaction rate of UV irradiation is almost 1.3 times that of visible light irradiation. This work provides a simple and effective strategy for the construction of reversible catalysts.
Collapse
Affiliation(s)
- Yufen Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jiaqian Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
6
|
Fu Z, Wang Y, Li F, Niu X, Li L, Liu D, Liu Z, Guo X. Access to different transient assemblies through kinetic control over the self-assembly of amphiphilic block copolymers using a versatile micromixer. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Toro-González M, Clifford DM, Molina MC, Castano CE, Rojas JV. New concept of radiolytic synthesis of gold nanoparticles in continuous flow. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Tan X, Xu Y, Lin S, Dai G, Zhang X, Xia F, Dai Y. Peptide-anchored gold nanoparticles with bicatalytic sites for photo-switchable cascade catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Tannic Acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-Nitrophenol Reduction, Suzuki-Miyaura coupling reactions and click reactions in aqueous solution. J Colloid Interface Sci 2021; 604:281-291. [PMID: 34271489 DOI: 10.1016/j.jcis.2021.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
Due to the good electrical, optical, magnetic, catalytic properties, transition metal nanoparticles (TMNPs) have been becoming more and more interesting in the fileds of environment, material, biomedicine, catalysis, and so on. Here, tannic acid (TA) is used as a green and efficient stabilizer to fabricate all kinds of TMNPs including AuNPs, AgNPs, CuNPs and PdNPs. These TMNPs possess small sizes ranging from 1 nm to 6 nm, which is conducive to several catalytic reactions in aqueous solution, such as 4-nitrophenol (4-NP) reduction, CuAAC reactions and Suzuki-Miyaura coupling reactions. AuNPs and PdNPs are found to have distinctly higher catalytic activities than AgNPs and CuNPs in the 4-NP reduction process. Especially, PdNPs show the highest catalytic activities with TOF up to 7200 h-1 in the 4-NP reduction. Furthermore, PdNPs also exhibit satisfying catalytic performance in the Suzuki-Miyaura coupling process, and CuNPs are catalytically active in the copper-catalyzed azide alkyne cycloaddition (CuAAC) reactions. The applicability and generality of PdNPs and CuNPs are respectively confirmed via the reaction between different substrates in the Suzuki-Miyaura coupling reactions and the CuAAC reactions. This work present a simple, fast, green and efficient strategy to synthesize TMNPs for multiple catalysis.
Collapse
|
10
|
Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts 2021. [DOI: 10.3390/catal11060714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged in recent decades as attractive and selective catalysts for sustainable organic synthesis. Nanostructured gold is indeed environmentally friendly and benign for human health; at the same time, it is active, under different morphologies, in a large variety of oxidation and reduction reactions of interest for the chemical industry. To stabilize the AuNPs and optimize the chemical environment of the catalytic sites, a wide library of natural and synthetic polymers has been proposed. This review describes the main routes for the preparation of AuNPs supported/embedded in synthetic organic polymers and compares the performances of these catalysts with those of the most popular AuNPs supported onto inorganic materials applied in hydrogenation and oxidation reactions. Some examples of cascade coupling reactions are also discussed where the polymer-supported AuNPs allow for the attainment of remarkable activity and selectivity.
Collapse
|
11
|
Kong XX, Chen WD, Cui FC, Li YQ. Conformational and Dynamical Evolution of Block Copolymers in Shear Flow. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|
13
|
Nanoengineering of Gold Nanoparticles: Green Synthesis, Characterization, and Applications. CRYSTALS 2019. [DOI: 10.3390/cryst9120612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fundamental aspects of the manufacturing of gold nanoparticles (AuNPs) are discussed in this review. In particular, attention is devoted to the development of a simple and versatile method for the preparation of these nanoparticles. Eco-friendly synthetic routes, such as wet chemistry and biosynthesis with the aid of polymers, are of particular interest. Polymers can act as reducing and/or capping agents, or as soft templates leading to hybrid nanomaterials. This methodology allows control of the synthesis and stability of nanomaterials with novel properties. Thus, this review focus on a fundamental study of AuNPs properties and different techniques to characterize them, e.g., Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), UV-Visible spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy, Small-angle X-Ray Scattering (SAXS), and rheology. Recently, AuNPs obtained by “green” synthesis have been applied in catalysis, in medicine, and as antibacterials, sensors, among others.
Collapse
|
14
|
Wang L, Zhang X, Cui Y, Guo X, Chen S, Sun H, Gao D, Yang Q, Kang J. Polyethyleneimine-oleic acid micelle-stabilized gold nanoparticles for reduction of 4-nitrophenol with enhanced performance. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00353-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Din MI, Khalid R, Hussain Z, Hussain T, Mujahid A, Najeeb J, Izhar F. Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review. Crit Rev Anal Chem 2019; 50:322-338. [DOI: 10.1080/10408347.2019.1637241] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Tajamal Hussain
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Jawayria Najeeb
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Izhar
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| |
Collapse
|
16
|
Caldera-Villalobos M, Martins-Alho M, Herrera González AM, García-Serrano J. Stabilization of colloidal metallic nanoparticles using polymers and hexa-substituted compounds with 1,3,4-oxadiazole pendant groups. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04516-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Gold Nanoparticles Stabilized by 1,2,3-Triazolyl Dendronized Polymers as Highly Efficient Nanoreactors for the Reduction of 4-Nitrophenol. Catal Letters 2019. [DOI: 10.1007/s10562-019-02662-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Vellaichamy B, Prakash P, Thomas J. Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction. ULTRASONICS SONOCHEMISTRY 2018; 48:362-369. [PMID: 30080561 DOI: 10.1016/j.ultsonch.2018.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/24/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
A facile, green and one-pot synthesis strategy for the convenient preparation of well-dispersed gold nanoparticles (AuNPs) decorated reduced graphene oxide (RGO) without using any other toxic chemicals and reductants is reported herein. The synthesized AuNPs@RGO hybrid nanomaterials were characterized by UV-visible absorption spectroscopy, FT-IR, XRD, Raman, SEM, TEM and EDX analysis. The AuNPs@RGO acts as an efficient catalyst for the reduction of organic nitroaromatics (2- & 4-nitro phenols) in the presence of NaBH4. This newly synthesized hybrid AuNPs@RGO has superior catalytic activity over any other Au-nanomaterials ever reported. The rate of nitro aromatics reduction is found to be dependent on concentrations of substrate, reductant and catalyst. The mechanisms for the synthesis and catalytic reduction have been studied and discussed.
Collapse
Affiliation(s)
| | | | - Jeena Thomas
- Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
| |
Collapse
|
20
|
Ghasemi S, Harandi ZA. PdNPs@thermo-responsive block copolymers composed of PNIPAM and poly(ionic liquid) via RAFT polymerization. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2532-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Lü J, Yang Y, Gao J, Duan H, Lü C. Thermoresponsive Amphiphilic Block Copolymer-Stablilized Gold Nanoparticles: Synthesis and High Catalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8205-8214. [PMID: 29920199 DOI: 10.1021/acs.langmuir.8b00414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of novel well-defined 8-hydroxyquinoline (HQ)-containing thermoresponsive amphiphilic diblock copolymers {poly(styrene- co-5-(2-methacryloylethyloxy-methyl)-8-quinolinol)- b-poly( N-isopropylacrylamide) P(St- co-MQ)- b-PNIPAm (P1,2), P(NIPAm- co-MQ)- b-PSt (P3,4)} and triblock copolymer poly( N-isopropylacrylamide)- b-poly(methyl-methacrylate- co-5-(2-methacryloylethyloxymethyl)-8-quinolinol)- b-polystyrene PNIPAm- b-P(MMA- co-MQ)- b-PSt (P5) were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization, and their self-assembly behaviors were studied. Block copolymer P1-P5-stabilized gold nanoparticles (Au@P1-Au@P5) with a small size and a narrow distribution were obtained through the in situ reduction of gold precursors in an aqueous solution of polymer micelles with HQ as the coordination groups. The resulting Au@P nanohybrids possessed excellent catalytic activity for the reduction of nitrophenols using NaBH4. The size, morphology, and surface chemistry of Au NPs could be controlled by adjusting the structure of block polymers with HQ in different block positions, which plays an important role in the catalytic properties. It was found that longer chain lengths of hydrophilic or hydrophobic segments of block copolymers were beneficial to elevating the catalytic activity of Au NPs for the reduction of nitrophenols, and the spherical nanoparticles (Au@P5) stabilized with triblock copolymers exhibit higher catalytic performance. Surprisingly, the gold nanowires (Au@P4) produced with P4 have the highest catalytic activity due to a large abundance of grain boundaries. Excellent thermoresponsive behavior for catalytic reaction makes the as-prepared Au@P hybrids an environmentally responsive nanocatalytic material.
Collapse
Affiliation(s)
- Jianhua Lü
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| | - Yu Yang
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| | - Junfang Gao
- Department of Chemistry , Baotou Teachers College , Baotou 014030 , P. R. China
| | - Haichao Duan
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| |
Collapse
|
22
|
Duan H, Yang Y, Lü J, Lü C. Mussel-inspired construction of thermo-responsive double-hydrophilic diblock copolymers-decorated reduced graphene oxide as effective catalyst supports for highly dispersed superfine Pd nanoparticles. NANOSCALE 2018; 10:12487-12496. [PMID: 29926868 DOI: 10.1039/c8nr02719f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Well-dispersed ultrafine palladium nanoparticles supported by reduced graphene oxide functionalized with catechol-terminated thermo-responsive block copolymer (PdNPs@BPrGO) were successfully constructed for highly efficient heterogeneous catalytic reduction. We first synthesized a novel temperature-responsive episulfide-containing double-hydrophilic diblock copolymer, poly(poly(ethylene glycol) methyl ether methacrylate-co-2,3-epithiopropyl methacrylate)-block-poly(N-isopropylacrylamide) (P(PEGMA-co-ETMA)-b-PNIPAM), through a reversible addition-fragmentation chain transfer (RAFT) polymerization utilizing a chain-transfer agent with a catechol unit as the end group. The obtained block copolymers can be facilely anchored to the surface of GO via mussel-inspired chemistry. The PdNPs were loaded on GO decorated with block copolymer brushes (BPrGO) as a support via the in situ reduction of palladium precursors with the episulfide ligands of the block copolymer as a stabilizer. The resulting PdNPs@BPrGO nanohybrid catalyst had good water dispersibility and stability. Furthermore, a low dosage of PdNPs@BPrGO catalyst exhibited excellent catalytic performance in the reduction of methylene blue and nitrophenols. The performance was attributed to the ability of PdNPs@BPrGO to facilitate the diffusion of reactants compared to PdNPs@GO without polymer modification. PdNPs@BPrGO also possessed an interesting temperature-responsive catalytic property due to the reversible "coil-to-globule" phase transition behaviour of PNIPAM blocks onto the surface of catalyst. The PdNPs@BPrGO catalyst was successfully recovered and reused five times without any detectible loss in catalytic activity, demonstrating its great potential in a wide range of industrial catalytic applications.
Collapse
Affiliation(s)
- Haichao Duan
- College of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | | | | | | |
Collapse
|
23
|
Dong H, Dai Y, Zhang X, Zhang Z, Fu S, Zhong Z. The influence of amine structures on the stability and catalytic activity of gold nanoparticles stabilized by amine-modified hyperbranched polymers. NANOTECHNOLOGY 2018; 29:055705. [PMID: 29231179 DOI: 10.1088/1361-6528/aaa0fe] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amine-modified amphiphilic hyperbranched polymers (MePEG-H104-Nx) were prepared from hyperbranched 2,2-bis(methylol)propionic acid polyester (H104) by decoration with polyethylene glycol monomethyl ether (MePEG) and different classes of oligo(ethylenimine)s. By using the MePEG-H104-Nx polymers as stabilizers, gold nanoparticles (AuNPs) were prepared in an aqueous medium by the reduction of HAuCl4 with NaBH4. The AuNPs were sphere-like with diameters of 2-4 nm, which were dependent on the structure of the amines. Further, the catalytic activity of these AuNPs was evaluated by monitoring the reduction reaction of 4-nitrophenol by sodium borohydride. The results demonstrate that the longer chain length and the branched structure of the amine moieties are beneficial for the stability and catalytic activity of the AuNPs. The AuNPs stabilized by MePEG-H104-N4 and MePEG-H104-Nb3 showed high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Cui X, Zheng Y, Tian M, Dong Z. Palladium nanoparticles supported on SiO 2 @Fe 3 O 4 @m-MnO 2 mesoporous microspheres as a highly efficient and recyclable catalyst for hydrodechlorination of 2,4-dichlorophenol and reduction of nitroaromatic compounds and organic dyes. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Li M, Xu G, Gong Y, Wang W, Liu Y, Guo J. Green preparation of hollow mesoporous silica nanosphere inside-loaded gold nanoparticles and the catalytic activity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1313128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Wang L, Yang Q, Cui Y, Gao D, Kang J, Sun H, Zhu L, Chen S. Highly stable and biocompatible dendrimer-encapsulated gold nanoparticle catalysts for the reduction of 4-nitrophenol. NEW J CHEM 2017. [DOI: 10.1039/c7nj01567d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enhanced properties of dendrimer-encapsulated gold nanoparticles were attributed to the single zwitterionic layer on the new dendrimer template.
Collapse
Affiliation(s)
- Longgang Wang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- P. R. China
| | - Qinghua Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Yanshuai Cui
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- P. R. China
| | - Dawei Gao
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- P. R. China
| | - Jianxin Kang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- P. R. China
| | - Haotian Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Linlin Zhu
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- P. R. China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|
27
|
Satapathy S, Mohanta J, Si S. Modulating the Catalytic Activity of Gold Nanoparticles through Surface Tailoring. ChemistrySelect 2016. [DOI: 10.1002/slct.201600985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Smithsagar Satapathy
- School of Applied Sciences and Center of Industrial Technology; KIIT University; Bhubaneswar - 751 024 India
| | - Jagdeep Mohanta
- School of Applied Sciences and Center of Industrial Technology; KIIT University; Bhubaneswar - 751 024 India
| | - Satyabrata Si
- School of Applied Sciences and Center of Industrial Technology; KIIT University; Bhubaneswar - 751 024 India
| |
Collapse
|
28
|
Deka P, Sarmah P, Deka RC, Bharali P. Hetero-nanostructured Ni/α-Mn2O3as Highly Active Catalyst for Aqueous Phase Reduction Reactions. ChemistrySelect 2016. [DOI: 10.1002/slct.201601131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pangkita Deka
- Department of Chemical Sciences; Tezpur University; Napaam 784 028 India
| | - Pingal Sarmah
- Department of Chemical Sciences; Tezpur University; Napaam 784 028 India
| | - Ramesh C. Deka
- Department of Chemical Sciences; Tezpur University; Napaam 784 028 India
| | - Pankaj Bharali
- Department of Chemical Sciences; Tezpur University; Napaam 784 028 India
| |
Collapse
|
29
|
Dai Y, Yu P, Zhang X, Zhuo R. Gold nanoparticles stabilized by amphiphilic hyperbranched polymers for catalytic reduction of 4-nitrophenol. J Catal 2016. [DOI: 10.1016/j.jcat.2016.01.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Dai Y, Zhang X, Zhuo R. Amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ϵ-caprolactone): synthesis, self-assembly and application as stabilizer of platinum nanoparticles. POLYM INT 2016. [DOI: 10.1002/pi.5118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Dai
- Faculty of Material Science and Chemistry; China University of Geosciences; Wuhan 430074 China
- Engineering Research Center of Nano-Geo Materials of Ministry of Education; China University of Geosciences; Wuhan 430074 China
| | - Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry, Wuhan University; Wuhan 430072 China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry, Wuhan University; Wuhan 430072 China
| |
Collapse
|
31
|
Mohanta J, Satapathy S, Si S. Porous Silica-Coated Gold Nanorods: A Highly Active Catalyst for the Reduction of 4-Nitrophenol. Chemphyschem 2016; 17:364-8. [DOI: 10.1002/cphc.201501127] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Jagdeep Mohanta
- School of Applied Sciences & Center of Industrial Technology; KIIT University; Bhubaneswar 751 024 India
| | - Smithsagar Satapathy
- School of Applied Sciences & Center of Industrial Technology; KIIT University; Bhubaneswar 751 024 India
| | - Satyabrata Si
- School of Applied Sciences & Center of Industrial Technology; KIIT University; Bhubaneswar 751 024 India
| |
Collapse
|
32
|
Wang D, Liu B, Lü J, Lü C. Facile synthesis of thermo-responsive episulfide group-containing diblock copolymers as robust protecting ligands of gold nanoparticles for catalytic applications. RSC Adv 2016. [DOI: 10.1039/c6ra02885c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Well-defined novel thermo-responsive diblock copolymers containing episulfide ligand stabilized Au NPs show interesting assembly morphologies, excellent colloidal stability and high catalytic activity for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Dongmei Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Bingxin Liu
- School of Mechanical Engineering
- Qinghai University
- Xining 810016
- P. R. China
| | - Jianhua Lü
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
33
|
Ballarin B, Barreca D, Boanini E, Bonansegna E, Cassani MC, Carraro G, Fazzini S, Mignani A, Nanni D, Pinelli D. Functionalization of silica through thiol-yne radical chemistry: a catalytic system based on gold nanoparticles supported on amino-sulfide-branched silica. RSC Adv 2016. [DOI: 10.1039/c6ra02479c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synthesis of a novel catalytic system based on gold nanoparticles supported on silica functionalized via a thiol-yne radical reaction.
Collapse
Affiliation(s)
- Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Davide Barreca
- CNR-IENI c/o Department of Chemical Sciences
- University of Padova
- I-35131 Padova
- Italy
| | - Elisa Boanini
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna
- I-40126 Bologna
- Italy
| | - Elisa Bonansegna
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Giorgio Carraro
- Department of Chemical Sciences
- University of Padova and INSTM
- I-35131 Padova
- Italy
| | - Silvia Fazzini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Adriana Mignani
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Daniele Nanni
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Davide Pinelli
- Department of Civil, Chemical, Environmental, and Materials Engineering
- University of Bologna
- I-40131 Bologna
- Italy
| |
Collapse
|
34
|
Dai Y, Zhang X, Zhuo R. Polymeric micelles stabilized by polyethylenimine–copper (C2H5N–Cu) coordination for sustained drug release. RSC Adv 2016. [DOI: 10.1039/c6ra02300b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymeric micelles stabilized by polyethylenimine–copper (C2H5N–Cu) coordination were described to improve the release property of water-insoluble anticancer drug.
Collapse
Affiliation(s)
- Yu Dai
- Faculty of Material Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|