1
|
Ye J, Dimitratos N, Rossi LM, Thonemann N, Beale AM, Wojcieszak R. Hydrogenation of CO 2 for sustainable fuel and chemical production. Science 2025; 387:eadn9388. [PMID: 40014720 DOI: 10.1126/science.adn9388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/01/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Abstract
Catalytic carbon dioxide (CO2) hydrogenation is a potential route for producing sustainable fuels and chemicals, but existing catalysts need improvement. In particular, identifying active sites and understanding the interaction between components and the dynamic behavior of the participant species remain unclear. This fundamental knowledge is essential for the design of more efficient and stable catalysts. Because the nature of the active site (metal, oxide, carbide) is the main factor that determines the catalytic activity of the catalysts, this Review focuses on various types of heterogeneous catalysts that have been recently reported in the literature as efficient for CO2 conversion to C1 [carbon monoxide (CO), methanol (CH3OH), methane (CH4)], and higher hydrocarbons. We focus on establishing key connections between active-site structures and selectivity, regardless of catalyst composition.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, USA
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari," Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna, Italy
| | - Liane M Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, Brazil
| | - Nils Thonemann
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, Leiden, Netherlands
| | - Andrew M Beale
- Department of Chemistry, 20 Gordon Street, University College London, London, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, UK
| | - Robert Wojcieszak
- Université de Lorraine, CNRS, L2CM UMR 7053, Nancy, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France
| |
Collapse
|
2
|
Rivera-Arrieta HI, Foppa L. Rules Describing CO 2 Activation on Single-Atom Alloys from DFT-Meta-GGA Calculations and Artificial Intelligence. ACS Catal 2025; 15:2916-2926. [PMID: 40013249 PMCID: PMC11851785 DOI: 10.1021/acscatal.4c07178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Single-atom alloys (SAAs) arise as a promising concept for the design of improved CO2 hydrogenation catalysts. However, from the immense number of possible SAA compositions and structures, only a few might display the properties required to be useful catalysts. Thus, the direct, high-throughput screening of materials is inefficient. Here, we use artificial intelligence to derive rules describing surface sites of SAAs that provide an effective CO2 activation, a crucial initial step to convert the molecule into valuable products. We start by modeling the CO2 interaction with 780 sites of flat and stepped surfaces of SAAs composed by Cu, Zn, and Pd hosts via high-quality DFT-mBEEF calculations. Then, we apply subgroup discovery to determine constraints on key physicochemical properties, out of 24 offered candidate descriptive parameters, characterizing subgroups (SGs) of surface sites where chemisorbed CO2 displays large elongations of its C-O bonds. The key identified parameters are free-atom properties of the elements constituting the surface sites, such as their electron affinity, electronegativity, and radii of the d-orbitals. Additionally, the generalized coordination number is selected as a key geometrical parameter. The SG rules are applied to identify promising surface sites from a candidate space of over 1500 possible ones in different single-atom and dual-atom alloys. Some of the promising alloys predicted by the SG rules were explicitly tested by additional DFT-mBEEF calculations and confirmed to provide a significant CO2 activation.
Collapse
Affiliation(s)
- Herzain I. Rivera-Arrieta
- The NOMAD Laboratory at the Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin D-14195, Germany
| | - Lucas Foppa
- The NOMAD Laboratory at the Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin D-14195, Germany
| |
Collapse
|
3
|
Zhang X, Yu X, Mendes RG, Matvija P, Melcherts AEM, Sun C, Ye X, Weckhuysen BM, Monai M. Highly Dispersed ZnO Sites in a ZnO/ZrO 2 Catalyst Promote Carbon Dioxide-to-Methanol Conversion. Angew Chem Int Ed Engl 2025; 64:e202416899. [PMID: 39377208 DOI: 10.1002/anie.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
ZnO/ZrO2 catalysts have shown better activity in the CO2 hydrogenation to methanol compared with single component counterparts, but the interaction between ZnO and ZrO2 is still poorly understood. In particular, the effect of the ZrO2 support phase (tetragonal vs. monoclinic) was not systematically explored. Here, we have synthesized ZnO/ZrO2 catalysts supported on tetragonal ZrO2 (ZnO/ZrO2-t) and monoclinic ZrO2 (ZnO/ZrO2-m), which resulted in the formation of different ZnOx species, consisting of sub-nanometer ZnO moieties and large-sized ZnO particles, respectively. ZnO/ZrO2-t exhibited a higher methanol selectivity (81 vs. 39 %) and methanol yield (1.25 vs. 0.67 mmol g-1 h-1) compared with ZnO/ZrO2-m. The difference in performance was attributed to the redox state and degree of dispersion of Zn, based on spectroscopy and microscopy results. ZnO/ZrO2-t had a high density of ZnOx-ZrOy sites, which favored the formation of active HCOO* species and enhanced the yield and selectivity of methanol along the formate pathway. Such ZnO clusters were further dispersed on ZrO2-t during catalysis, while larger ZnO particles on ZnO/ZrO2-m remained stable throughout the reaction. This study shows that the phase of ZrO2 supports can be used to control the dispersion of ZnO and the catalyst surface chemistry, and lead to enhanced catalytic performance.
Collapse
Affiliation(s)
- Xibo Zhang
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang Yu
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rafael G Mendes
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
| | - Peter Matvija
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000 Praha 8, Czech Republic
| | - Angela E M Melcherts
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Chunning Sun
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Xinwei Ye
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Matteo Monai
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
4
|
Su D, Wang Y, Sheng H, Yang Q, Pan D, Liu H, Zhang Q, Dai S, Tian Z, Lu Z, Chen L. Efficient amine-assisted CO 2 hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters. Nat Commun 2025; 16:590. [PMID: 39799180 PMCID: PMC11724949 DOI: 10.1038/s41467-025-55837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025] Open
Abstract
Amine-assisted two-step CO2 hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO2 (i.e., first step) and the subsequent amide hydrogenation (i.e., second step) are required to be optimized. Herein, a class of Al2O3-supported Ru catalysts, featuring multiple activated Ru species (i.e., metallic and oxidized Ru), are rationally fabricated. Density functional theory calculations suggest that metallic Ru forms are preferred for N-formylation step, whereas oxidized Ru species demonstrate enhanced amide hydrogenation activity. Thus, the optimal catalyst, containing unique Ru clusters with coexisting metallic and oxidized Ru species, efficiently synergize the conversion of CO2 into methanol with exceptional selectivity (>95%) in a one-pot two-step process. This work not only presents an advanced catalyst for CO2-based methanol production but also highlights the strategic design of catalysts with multiple active species for optimizing the catalytic performances of multistep reactions in the future.
Collapse
Affiliation(s)
- Desheng Su
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yinming Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Haoyun Sheng
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qihao Yang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Dianhui Pan
- Ningbo Hesheng New Materials Co., Ltd, Ningbo, Zhejiang, PR China
| | - Hao Liu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Qiuju Zhang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Sheng Dai
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Ziqi Tian
- University of Chinese Academy of Sciences, Beijing, PR China.
- Advanced Interdisciplinary Science Research Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
| | - Zhiyi Lu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Liang Chen
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
5
|
Ma Q, Cheng J, Wu X, Xie J, Zhang R, Mao Z, Yang H, Fan W, Zeng J, Bitter JH, Li G, Li Z, Li C. C-C bond coupling with sp 3 C-H bond via active intermediates from CO 2 hydrogenation. Nat Commun 2025; 16:140. [PMID: 39747077 PMCID: PMC11697012 DOI: 10.1038/s41467-024-55640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Compared to the sluggish kinetics observed in methanol-mediated side-chain alkylation of methyl groups with sp3 C-H bonds, CO2 hydrogenation emerges as a sustainable alternative strategy, yet it remains a challenge. Here, as far as we know, it is first reported that using CO2 hydrogenation replacing methanol can conduct the side-chain alkylation of 4-methylpyridine (MEPY) over a binary metal oxide-zeolite Zn40Zr60O/CsX tandem catalyst (ZZO/CsX). This ZZO/CsX catalyst can achieve 19.6% MEPY single-pass conversion and 82% 4-ethylpyridine (ETPY) selectivity by using CO2 hydrogenation, which is 6.5 times more active than methanol as an alkylation agent. The excellent catalytic performance is realized on the basis of the dual functions of the tandem catalyst: hydrogenation of CO2 on the ZZO and activation of sp3 C-H bond and C-C bond coupling on the CsX zeolite. The thermodynamic and kinetic coupling between the tandem reactions enables the highly efficient CO2 hydrogenation and C-C bond coupling. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations suggest that the CHxO* (CH2O*) species, rather than methanol produced from CO2 hydrogenation, is the key intermediate to achieve the C-C bond coupling.
Collapse
Affiliation(s)
- Qianli Ma
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jianian Cheng
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Xiaojing Wu
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jin Xie
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Ruihui Zhang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Zhihe Mao
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Hongfang Yang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Johannes Hendrik Bitter
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Guanna Li
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Zelong Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Can Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| |
Collapse
|
6
|
Song YJ, Guo S, Xia P, Sun F, Chen ZX, Yang SH, Zhang XY, Zhang T. Development of supported intermetallic compounds: advancing the Frontiers of heterogeneous catalysis. NANOSCALE HORIZONS 2024; 10:16-37. [PMID: 39377263 DOI: 10.1039/d4nh00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Intermetallic compound (IMC) catalysts have garnered significant attention due to their unique surface and electronic properties, which can lead to enhanced catalytic performance compared to traditional monometallic catalysts. However, developing IMC materials as high-performance catalysts has been hindered by the inherent complexity of synthesizing nanoparticles with well-defined bulk and surface compositions. Achieving precise control over the composition of supported bimetallic IMC catalysts, especially those with high surface area and stability, has proven challenging. This review provides a comprehensive overview of the recent progress in developing supported IMC catalysts. We first examine the various synthetic approaches that have been explored to prepare supported IMC nanoparticles with phase-pure bulk structures and tailored surface compositions. Key factors influencing the formation kinetics and compositional control of these materials are discussed in detail. Then the strategies for manipulating the surface composition of supported IMCs are delved into. Applications of high-performance supported IMCs in important reactions such as selective hydrogenation, reforming, dehydrogenation, and deoxygenation are comprehensively reviewed, showcasing the unique advantages offered by these materials. Finally, the prevailing research challenges associated with supported IMCs are identified, including the need for a better understanding of the composition-property relationships and the development of scalable synthesis methods. The prospects for the practical implementation of these versatile catalysts in industrial processes are also highlighted, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Yuan-Jun Song
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Sijie Guo
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Peng Xia
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Fei Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Ze-Xian Chen
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Shi-Han Yang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Xiao-Yang Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Tong Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Rakngam I, Alves GAS, Osakoo N, Wittayakun J, Konegger T, Föttinger K. Hydrothermal synthesis of ZnZrO x catalysts for CO 2 hydrogenation to methanol: the effect of pH on structure and activity. RSC SUSTAINABILITY 2024; 2:3798-3805. [PMID: 39429716 PMCID: PMC11484158 DOI: 10.1039/d4su00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/11/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
With the growing necessity of achieving carbon neutrality in the industrial sector, the catalytic hydrogenation of carbon dioxide into methanol has been widely considered one of the key strategies for the utilization of captured CO2. For this reason, the development of alternative catalysts such as ZnZrO x has attracted considerable interest, given its superior stability and versatility in comparison to the conventional Cu-based materials. In this work, ZnZrO x has been produced by a hydrothermal synthesis method at varied synthesis pH between 7 and 10 and a positive association between pH and catalytic CO2 conversion is observed. At 2.0 MPa and 250 °C, ZnZrO x produced at pH 10 shows a methanol selectivity of 95% at a CO2 conversion of 3.4%. According to characterization, basic pH conditions enable the formation of abundant t-ZrO2 and the subsequent incorporation of Zn2+ into this phase, although the content of surface Zn does not increase between pH 8 and 10. Nevertheless, synthesis pH values can be correlated with surface oxygen content and CO2 adsorption capacity, which could be important contributors to the higher catalytic activity observed as a result of higher synthesis pH values. However, upon synthesis at pH 10, an inferior selectivity to methanol is observed above 250 °C, as a possible result of the excessive formation of ZnO. Interestingly, this secondary phase can be prevented and the selectivity can be slightly improved by utilizing NH4OH instead of NaOH in the hydrothermal method.
Collapse
Affiliation(s)
- Issaraporn Rakngam
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Gustavo A S Alves
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
- Chair of Physical Chemistry, Montanuniversität Leoben Franz-Josef-Straße 18 8700 Leoben Austria
| | - Nattawut Osakoo
- Institute of Research and Development, Suranaree University of Technology Thailand
| | - Jatuporn Wittayakun
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Thomas Konegger
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9 1060 Vienna Austria
| | - Karin Föttinger
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
- Chair of Physical Chemistry, Montanuniversität Leoben Franz-Josef-Straße 18 8700 Leoben Austria
| |
Collapse
|
8
|
Velisoju VK, Ramos-Fernández EV, Kancherla R, Ahmad R, Pal K, Mohamed H, Cerrillo JL, Meijerink MJ, Cavallo L, Rueping M, Castaño P. Highly Dispersed Pd@ZIF-8 for Photo-Assisted Cross-Couplings and CO 2 to Methanol: Activity and Selectivity Insights. Angew Chem Int Ed Engl 2024; 63:e202409490. [PMID: 39126183 DOI: 10.1002/anie.202409490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Our study unveils a pioneering methodology that effectively distributes Pd species within a zeolitic imidazolate framework-8 (ZIF-8). We demonstrate that Pd can be encapsulated within ZIF-8 as atomically dispersed Pd species that function as an excited-state transition metal catalyst for promoting carbon-carbon (C-C) cross-couplings at room temperature using visible light as the driving force. Furthermore, the same material can be reduced at 250 °C, forming Pd metal nanoparticles encapsulated in ZIF-8. This catalyst shows high rates and selectivity for carbon dioxide hydrogenation to methanol under industrially relevant conditions (250 °C, 50 bar): 7.46 molmethanol molmetal -1 h-1 and >99 %. Our results demonstrate the correlations of the catalyst structure with the performances at experimental and theoretical levels.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mark J Meijerink
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Maqbool Q, Dobrezberger K, Stropp J, Huber M, Kontrus KL, Aspalter A, Neuhauser J, Schachinger T, Löffler S, Rupprechter G. Bimetallic CuPd nanoparticles supported on ZnO or graphene for CO 2 and CO conversion to methane and methanol. RSC SUSTAINABILITY 2024; 2:3276-3288. [PMID: 39323512 PMCID: PMC11418587 DOI: 10.1039/d4su00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
Carbon dioxide (CO2) and carbon monoxide (CO) hydrogenation to methane (CH4) or methanol (MeOH) is a promising pathway to reduce CO2 emissions and to mitigate dependence on rapidly depleting fossil fuels. Along these lines, a series of catalysts comprising copper (Cu) or palladium (Pd) nanoparticles (NPs) supported on zinc oxide (ZnO) as well as bimetallic CuPd NPs supported on ZnO or graphene were synthesized via various methodologies. The prepared catalysts underwent comprehensive characterization via high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) mapping, electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction and desorption (H2-TPR and H2-TPD), and deuterium temperature-programmed desorption (D2O-TPD). In the CO2 hydrogenation process carried out at 20 bar and elevated temperatures (300 to 500 °C), Cu, Pd, and CuPd NPs (<5 wt% loading) supported on ZnO or graphene predominantly yielded CH4 as the primary product, with CO generated as a byproduct via the reverse water gas shift (RWGS) reaction. For CO hydrogenation between 400 and 500 °C, the CO conversion was at least 40% higher than the CO2 conversion, with CH4 and CO2 identified as the main products, the latter from water gas shift. Employing 90 wt% Cu on ZnO led to an enhanced CO conversion of 14%, with the MeOH yield reaching 10% and the CO2 yield reaching 4.3% at 230 °C. Overall, the results demonstrate that lower Cu/Pd loading (<5 wt%) supported on ZnO/graphene favored CH4 production, while higher Cu content (90 wt%) promoted MeOH production, for both CO2 and CO hydrogenation at high pressure.
Collapse
Affiliation(s)
- Qaisar Maqbool
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| | - Klaus Dobrezberger
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| | - Julian Stropp
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| | - Martin Huber
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| | - Karl-Leopold Kontrus
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| | - Anna Aspalter
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| | - Julie Neuhauser
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| | - Thomas Schachinger
- University Service Center for Transmission Electron Microscopy, TU Wien Stadionallee 2/057-02 1020 Vienna Austria
| | - Stefan Löffler
- University Service Center for Transmission Electron Microscopy, TU Wien Stadionallee 2/057-02 1020 Vienna Austria
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
| |
Collapse
|
10
|
Ahmad K, Dabbawala AA, Polychronopoulou K, Anjum D, Gacesa M, Abi Jaoude M. Kinetic Insights into Methanol Synthesis from CO 2 Hydrogenation at Atmospheric Pressure over Intermetallic Pd 2Ga Catalyst. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400159. [PMID: 39398528 PMCID: PMC11469785 DOI: 10.1002/gch2.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Indexed: 10/15/2024]
Abstract
This study presents a single-site microkinetic model for methanol synthesis by CO2 hydrogenation over intermetallic Pd2Ga/SiO2. A reaction path analysis (RPA) combining theoretical results and realistic catalyst surface reaction data is established to elucidate the reaction mechanism and kinetic models of CO2 hydrogenation to methanol and CO. The RPA leads to the derivation of rate expressions for both reactions without presumptions about the most abundant reactive intermediate (MARI) and rate-determining step (rds). The formation of H2COOH* is found to be the rds (step 19) for methanol synthesis via the formate pathway, with CO2 and H-atoms adsorbed on intermetallic sites as the MARIs. The derived kinetic model is corroborated with experimental data acquired under different reaction conditions, using a lab-scale fixed-bed reactor and Pd2Ga/SiO2 nanoparticles prepared by incipient wetness impregnation. The excellent agreement between the experimental data and the kinetic model (R 2 = 0.99) substantiates the proposed mechanism with an activation energy of 61.52 kJ mol-1 for methanol synthesis. The reported catalyst exhibits high selectivity to methanol (96%) at 1 bar, 150 °C, and H2/CO2 ratio of 3:1. These findings provide critical insights to optimize catalysts and processes targeting CO2 hydrogenation at atmospheric pressure and low temperatures for on-demand energy production.
Collapse
Affiliation(s)
- Kaisar Ahmad
- Center for Catalysis and SeparationDepartment of ChemistryKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Aasif Asharafbhai Dabbawala
- Center for Catalysis and SeparationDepartment of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Kyriaki Polychronopoulou
- Center for Catalysis and SeparationDepartment of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Dalaver Anjum
- Center for Catalysis and SeparationDepartment of PhysicsKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Marko Gacesa
- Center for Catalysis and SeparationDepartment of PhysicsKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Maguy Abi Jaoude
- Center for Catalysis and SeparationDepartment of ChemistryKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| |
Collapse
|
11
|
Aktary M, Alghamdi HS, Ajeebi AM, AlZahrani AS, Sanhoob MA, Aziz MA, Nasiruzzaman Shaikh M. Hydrogenation of CO 2 into Value-added Chemicals Using Solid-Supported Catalysts. Chem Asian J 2024; 19:e202301007. [PMID: 38311592 DOI: 10.1002/asia.202301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Reducing CO2 emissions is an urgent global priority. In this context, several mitigation strategies, including CO2 tax and stringent legislation, have been adopted to halt the deterioration of the natural environment. Also, carbon recycling procedures undoubtedly help reduce net emissions into the atmosphere, enhancing sustainability. Utilizing Earth's abundant CO2 to produce high-potential green chemicals and light fuels opens new avenues for the chemical industry. In this context, many attempts have been devoted to converting CO2 as a feedstock into various value-added chemicals, such as CH4, lower methanol, light olefins, gasoline, and higher hydrocarbons, for numerous applications involving various catalytic reactions. Although several CO2-conversion methods have been used, including electrochemical, photochemical, and biological approaches, the hydrogenation method allows the reaction to be tuned to produce the targeted compound without significantly altering infrastructure. This review discusses the numerous hydrogenation routes and their challenges, such as catalyst design, operation, and the combined art of structure-activity relationships for the various product formations.
Collapse
Affiliation(s)
- Mahbuba Aktary
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Huda S Alghamdi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Afnan M Ajeebi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Atif S AlZahrani
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Mohammed A Sanhoob
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
12
|
Zhao F, Liang G, Yang X, Lei Y, Jin F, Xu L, Zhang C, Jiang W, Ben H, Li X. Micro-Structure Engineering in Pd-InO x Catalysts and Mechanism Studies for CO 2 Hydrogenation to Methanol. Molecules 2024; 29:3715. [PMID: 39202795 PMCID: PMC11357378 DOI: 10.3390/molecules29163715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Significant interest has emerged for the application of Pd-In2O3 catalysts as high-performance catalysts for CO2 hydrogenation to CH3OH. However, precise active site control in these catalysts and understanding their reaction mechanisms remain major challenges. In this investigation, a series of Pd-InOx catalysts were synthesized, revealing three distinct types of active sites: In-O, Pd-O(H)-In, and Pd2In3. Lower Pd loadings exhibited Pd-O(H)-In sites, while higher loadings resulted in Pd2In3 intermetallic compounds. These variations impacted catalytic performance, with Pd-O(H)-In catalysts showing heightened activity at lower temperatures due to the enhanced CO2 adsorption and H2 activation, and Pd2In3 catalysts performing better at elevated temperatures due to the further enhanced H2 activation. In situ DRIFTS studies revealed an alteration in key intermediates from *HCOO over In-O bonds to *COOH over Pd-O(H)-In and Pd2In3 sites, leading to a shift in the main reaction pathway transition and product distribution. Our findings underscore the importance of active site engineering for optimizing catalytic performance and offer valuable insights for the rational design of efficient CO2 conversion catalysts.
Collapse
Affiliation(s)
- Fengwang Zhao
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Gemeng Liang
- Hubei Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, SA 5000, Australia
| | - Xiaoli Yang
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Yang Lei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fayi Jin
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Leilei Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuanhui Zhang
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Wei Jiang
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Haoxi Ben
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Xingyun Li
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| |
Collapse
|
13
|
Patil T, Naji A, Mondal U, Pandey I, Unnarkat A, Dharaskar S. Sustainable methanol production from carbon dioxide: advances, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44608-44648. [PMID: 38961021 DOI: 10.1007/s11356-024-34139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.
Collapse
Affiliation(s)
- Tushar Patil
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Arkan Naji
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Ujjal Mondal
- Sustainability Centre of Excellence, Larsen & Toubro Technology Services, Vadodara, Gujarat, 382426, India
| | - Indu Pandey
- Larsen & Toubro Technology Services, Larsen & Toubro Tech Park, Byatarayanapura, Bengaluru, Karnataka, 560092, India
| | - Ashish Unnarkat
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Swapnil Dharaskar
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India.
| |
Collapse
|
14
|
Pinheiro Araújo T, Giannakakis G, Morales-Vidal J, Agrachev M, Ruiz-Bernal Z, Preikschas P, Zou T, Krumeich F, Willi PO, Stark WJ, Grass RN, Jeschke G, Mitchell S, López N, Pérez-Ramírez J. Low-nuclearity CuZn ensembles on ZnZrO x catalyze methanol synthesis from CO 2. Nat Commun 2024; 15:3101. [PMID: 38600146 PMCID: PMC11006684 DOI: 10.1038/s41467-024-47447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrOx, for CO2 hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrOx catalysts with small amounts (0.5 mol%) of diverse hydrogenation metals (Re, Co, Au, Ni, Rh, Ag, Ir, Ru, Pt, Pd, and Cu) prepared via a standardized flame spray pyrolysis approach. Cu emerges as the most effective promoter, doubling methanol productivity. Operando X-ray absorption, infrared, and electron paramagnetic resonance spectroscopic analyses and density functional theory simulations reveal that Cu0 species form Zn-rich low-nuclearity CuZn clusters on the ZrO2 surface during reaction, which correlates with the generation of oxygen vacancies in their vicinity. Mechanistic studies demonstrate that this catalytic ensemble promotes the rapid hydrogenation of intermediate formate into methanol while effectively suppressing CO production, showcasing the potential of low-nuclearity metal ensembles in CO2-based methanol synthesis.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jordi Morales-Vidal
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Zaira Ruiz-Bernal
- Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Phil Preikschas
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Tangsheng Zou
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Patrik O Willi
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Wendelin J Stark
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Robert N Grass
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
15
|
Ibrahim AO, Wan Daud WMA, Abdul Patah MF, Halilu A, Juan JC, Tanimu G. A microkinetic study of CO 2 hydrogenation to methanol on Pd 1-Cu(111) and Pd 1-Ag(111) catalysts: a DFT analysis. Phys Chem Chem Phys 2024; 26:10622-10632. [PMID: 38506646 DOI: 10.1039/d4cp00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The thermochemical conversion of CO2 into methanol, a process known for its selectivity, often encounters a significant obstacle: the reverse water gas reaction. This problem emerges due to the demanding high temperatures and pressures, causing instability in catalytic performance. Recent endeavours have focused on innovatively designing catalysts capable of withstanding such conditions. Given the costliness of experimental approaches, a theoretical framework has emerged as a promising avenue for addressing the challenges in methanol production. It has been reported that transition metals, especially Pd, provide ideal binding sites for CO2 molecules and hydrogen atoms, facilitating their interactions and subsequent conversion to methanol. In the geometric single-atom form, their surface enables precise control over the reaction pathways and enhances the selectivity towards methanol. In our study, we employed density functional theory (DFT) to explore the conversion of CO2 to CH3OH on Pd1-Cu(111) and Pd1-Ag(111) single-atom alloy (SAA) catalysts. Our investigation involved mapping out the complex reaction pathways of CO2 hydrogenation to CH3OH using microkinetic reaction modelling and mechanisms. We examined three distinct pathways: the COOH* formation pathway, the HCOO* formation pathway, and the dissociation of CO2* to CO* pathway. This comprehensive analysis encompassed the determination of adsorption energies for all reactants, transition states, and resultant products. Additionally, we investigated the thermodynamic and kinetic profiles of individual reaction steps. Our findings emphasised the essential role of the Pd single atom in enhancing the activation of CO2, highlighting the key mechanism underlying this catalytic process. The favoured route for methanol generation on the Pd1-Ag(111) single-atom alloy (SAA) surface unfolds as follows: CO2* progresses through a series of transformations, transitioning successively into HCOO*, HCOOH*, H2COOH*, CH2O*, and CH2OH*, terminating in the formation of CH3OH*, due to lower activation energies and higher rate constants.
Collapse
Affiliation(s)
- Abdulrauf Onimisi Ibrahim
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Ahmadu Bello University, Zaria 810222, Nigeria.
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmed Halilu
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Gazali Tanimu
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
16
|
Baran NY, Çalışkan M, Özpala A, Baran T. Fabrication of nano-sized Pd catalyst supported on sodium carboxymethyl cellulose/gum Arabic/sodium alginate functionalized microspheres for catalytic reduction of nitro compounds, organic dyes, K 3[Fe(CN) 6], and chromium(VI) pollutants. Int J Biol Macromol 2024; 262:130134. [PMID: 38354923 DOI: 10.1016/j.ijbiomac.2024.130134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The rapid development of industrialization and urbanization, along with the increasing human population, has led to serious water pollution. Among water pollutants, organic and inorganic pollutants cause serious problems for both the environment and human health due to their toxicity and carcinogenic properties. One of the best ways to eliminate these pollutants is to develop eco-friendly, efficient, and long-life catalysts. For this purpose, in this study, environmentally friendly microspheres containing sodium alginate (SA), sodium carboxymethyl cellulose (Na-CMC), and gum Arabic (GA) were fabricated as potential stabilizers (SA/Na-CMC/GA). Subsequently, newly heterogeneous catalyst system was designed by immobilizing Pd nanoparticles on them and characterized (Pd@SA/Na-CMC/GA). The catalytic reduction ability of Pd@SA/Na-CMC/GA was then investigated against the reduction of 4-nitroaniline (4-NA), 4-nitrophenol (4-NP), 2-nitroaniline (2-NA), 4-nitro-o-phenylenediamine (4-NPDA), methylene blue (MB), methyl orange (MO), Rodamin B (RhB), potassium hexacyanoferrate(III) (K3[Fe(CN)6]), and hexavalent chromium (Cr(VI)) using NaBH4. The Pd@SA/Na-CMC/GA effectively catalyzed these contaminants in a short period of time under mild reaction conditions. As a result of the performed kinetics studies, rate constants were found to be 0.009 s-1, 0.016 s-1, 0.027 s-1, 0.018 s-1, 0.043 s-1, 0.058 s-1, 0.038 s-1 and 0.041 s-1 for the reduction of 4-NP, 2-NA, 4-NA, 4-NPDA, MO, RhB, K3[Fe(CN)6], and Cr(VI), respectively. Additionally, MO was immediately reduced by Pd@SA/Na-CMC/GA. The microsphere nature of Pd@SA/Na-CMC/GA allowed for easy recovery through simple filtration and successful reuse for up to six cycles.
Collapse
Affiliation(s)
- Nuray Yılmaz Baran
- Department of Chemistry Technology, Technical Vocational School, Aksaray University, 68100 Aksaray, Turkey
| | - Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Ali Özpala
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
17
|
Kim SC, Kim BS. Catalytic removal of harmful volatile organic compounds by reutilizing zinc rods waste from spent batteries as a palladium catalyst support. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122678. [PMID: 37804904 DOI: 10.1016/j.envpol.2023.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
The emission of volatile organic compounds (VOCs) has led to significant deterioration in air quality, making it imperative to ensure that these compounds are removed from emission sources before they are released into the atmosphere. In this context, the present study recycled spent primary batteries to use their zinc rods waste (ZRW) as a palladium catalyst support for the removal of harmful VOCs. To this end, palladium supported on ZRW (Pd/ZRW) catalysts were prepared and tested for the catalytic oxidation of benzene, methylbenzene and 1,2-dimethylbenzene. The physicochemical properties of the Pd/ZRW catalysts were carefully characterized by ICP-OES, BET, SEM, XRD, FE-TEM, XPS, and H2-TPR analyses. The main component of ZRW was identified as ZnO. Consistent with expectations, increases in the loading of Pd from 0.1 to 1.0 wt% in the Pd/ZRW catalysts resulted in enhanced VOCs removal efficiency. The reaction temperature required for the complete oxidation (100% removal efficiency) of methylbenzene and 1,2-dimethylbenzene on the 1.0 wt% Pd/ZRW catalyst was below 340 °C at a gas hourly space velocity of 50,000 h-1. TEM, XPS, and H2-TPR results implied that the enhancement of catalytic activity with the addition of Pd could be attributed to the readily movable surface lattice oxygen as well as the active component (Pd species). Ultimately, ZRW of spent primary batteries appear to show promise as a catalyst support for VOCs removal. This study has introduced a novel strategy for reducing air pollutants by utilizing waste, which promotes the disposal of hazardous solid waste and ensures clean air quality.
Collapse
Affiliation(s)
- Sang Chai Kim
- Department of Environmental Education, Mokpo National University, Muan, 58554, Republic of Korea
| | - Beom-Sik Kim
- Hydrogen and Low-Carbon Energy R&D Lab., POSCO N.EX.T. Hub, POSCO Holdings, Pohang, 37673, Republic of Korea.
| |
Collapse
|
18
|
Bressi V, Len T, Polidoro D, Esposito R, Mazur M, Selva M, Espro C, Luque R. Controllable deposition of dispersed Pd nanoparticles on ZnO for Suzuki-Miyaura cross-coupling reactions. Dalton Trans 2023; 52:17279-17288. [PMID: 37937421 DOI: 10.1039/d3dt02295a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Palladium nanoparticles find extensive applications in catalysis in both homogeneously and heterogeneously catalyzed processes. Supporting metal nanoparticles enhances their stability as compared to their unsupported counterparts. The role of catalytic support is increasingly recognized as crucial in determining the behaviour of these materials. However, controlling the deposition and anchoring of palladium nanoparticles remains a significant challenge. This contribution discusses the preparation of straight lines of palladium particles on zinc oxide by wet impregnation. This phenomenon is attributed to the highly stepped morphology of the employed ZnO that created steric anchoring sites to stabilize the metal particles. Palladium-based catalysts were evaluated for the valuable Suzuki-Miyaura cross-coupling reaction. The dispersed Pd/ZnO catalyst achieved a conversion rate of 86% with 100% selectivity, remarkably superior to that of the Pd/Al2O3 and Pd/TiO2 counterparts.
Collapse
Affiliation(s)
- Viviana Bressi
- Department of Engineering, University of Messina, C.da di Dio, Vill. S. Agata, Messina, Italy
- Departamento de Química Orgánica, Instituto de Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, Spain.
| | - Thomas Len
- Departamento de Química Orgánica, Instituto de Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, Spain.
| | - Daniele Polidoro
- Department of Molecular Science and Nanosystems, Ca' Foscari, University of Venice, Via Torino 155, Venezia Mestre, Italy
| | - Roberto Esposito
- University of Naples Federico II, Department of Chemical Sciences, IT-80126 Naples, Italy
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Maurizio Selva
- Department of Molecular Science and Nanosystems, Ca' Foscari, University of Venice, Via Torino 155, Venezia Mestre, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, C.da di Dio, Vill. S. Agata, Messina, Italy
| | - Rafael Luque
- Universitá degli studi Mediterranea di Reggio Calabria (UNIRC), DICEAM, Via Zehender (già via Graziella), Loc. Feo di Vito, I89122, Reggio Calabria, Italy.
- Universidad ECOTEC, Km. 13.5 Samborondon, Samborondon, EC092302, Ecuador
| |
Collapse
|
19
|
Lyu M, Zheng J, Coulthard C, Ren J, Zhao Y, Tsang SCE, Chen C, O'Hare D. Core-shell silica@Cu xZnAl LDH catalysts for efficient CO 2 hydrogenation to methanol. Chem Sci 2023; 14:9814-9819. [PMID: 37736646 PMCID: PMC10510760 DOI: 10.1039/d3sc02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
The efficient production of methanol by reduction of CO2 using green hydrogen is a promising strategy from both a green chemistry and a carbon net zero perspective. Herein, we report the synthesis of well-dispersed core-shell catalyst precursors using silica@CuxZnAl-LDHs that can convert CO2 to methanol. The catalyst precursors can be formed using either a commercially available silica (ES757) or a mesoporous silica (e.g. MCM-48). These hybrid materials show significantly enhanced catalytic performance compared to the equivalent unsupported CuxZnAl LDH precursor. Space-time yields of up to 0.7 gMeOH gcat-1 h-1 under mild operating conditions were observed.
Collapse
Affiliation(s)
- Meng Lyu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| | - Jianwei Zheng
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Claire Coulthard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| | - Jing Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology 100029 Beijing P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology 100029 Beijing P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44(0)1865 272686
| |
Collapse
|
20
|
Mirzakhani S, Yin BH, Masteri-Farahani M, Yip ACK. Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Value-Added Chemicals. Chempluschem 2023; 88:e202300157. [PMID: 37263976 DOI: 10.1002/cplu.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Utilizing renewable energy to hydrogenate carbon dioxide into fuels eliminates massive CO2 emissions from the atmosphere and diminishes our need for using fossil fuels. This review presents the most recent developments for designing heterogeneous catalysts for the hydrogenation of CO2 to formate, methanol, and C2+ hydrocarbons. Thermodynamic challenges and mechanistic insights are discussed, providing a strong foundation to propose a suitable catalyst. The main body of this review focuses on nanostructured catalysts for constructing efficient heterogeneous systems. The most important factors affecting catalytic performance are highlighted, including active metals, supports and promoters that can potentially be used. The summary of the results and the outlook are presented in the final section. During the past few decades, heterogeneous CO2 hydrogenation has gained much attention and made tremendous progress. Thus, many highly efficient catalysts have been studied to discover their active sites and provide mechanistic insights. This paper summarizes recent advances in CO2 hydrogenation and its conversion into various hydrocarbons such as formate, methanol, and C2+ products. As for formate production, Au and Ru nanocatalysts show superior activity. However, considering the catalyst cost, Cu-based catalysts have an excellent prospect for methanol production, among other catalysts. Ultra-small nanoparticles and nanoclusters appear promising to provide highly active cost-effective catalysts. A growing number of researchers are investigating the possibility of directly synthesizing C2+ products through CO2 hydrogenation. The major challenge in producing heavy hydrocarbons is breaking the ASF limitations, which have been achieved over bifunctional catalysts using zeolites. Using suitable support and promoter can lead to a superior activity, ascribed to structural, electronic, and chemical promotional effects.
Collapse
Affiliation(s)
- Sara Mirzakhani
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ben Hang Yin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | | | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
21
|
Chai Y, Qin B, Li B, Dai W, Wu G, Guan N, Li L. Zeolite-encaged mononuclear copper centers catalyze CO 2 selective hydrogenation to methanol. Natl Sci Rev 2023; 10:nwad043. [PMID: 37547060 PMCID: PMC10401316 DOI: 10.1093/nsr/nwad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 08/08/2023] Open
Abstract
The selective hydrogenation of CO2 to methanol by renewable hydrogen source represents an attractive route for CO2 recycling and is carbon neutral. Stable catalysts with high activity and methanol selectivity are being vigorously pursued, and current debates on the active site and reaction pathway need to be clarified. Here, we report a design of faujasite-encaged mononuclear Cu centers, namely Cu@FAU, for this challenging reaction. Stable methanol space-time-yield (STY) of 12.8 mmol gcat-1 h-1 and methanol selectivity of 89.5% are simultaneously achieved at a relatively low reaction temperature of 513 K, making Cu@FAU a potential methanol synthesis catalyst from CO2 hydrogenation. With zeolite-encaged mononuclear Cu centers as the destined active sites, the unique reaction pathway of stepwise CO2 hydrogenation over Cu@FAU is illustrated. This work provides a clear example of catalytic reaction with explicit structure-activity relationship and highlights the power of zeolite catalysis in complex chemical transformations.
Collapse
Affiliation(s)
| | | | - Bonan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | |
Collapse
|
22
|
Fujiwara K, Akutsu T, Nishijima M, Tada S. Highly Dispersed Zn Sites on ZrO2 by Flame Spray Pyrolysis for CO2 Hydrogenation to Methanol. Top Catal 2023. [DOI: 10.1007/s11244-023-01803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Donphai W, Thepphankulngarm N, Chaisuwan T, Tanangteerapong D, Rood SC, Kongkachuichay P. Catalytic Performance of Copper and Ruthenium Loaded on N-Doped Modified PBZ-Derived Carbons for CO2 Hydrogenation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
24
|
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO 2 Hydrogenation: A Review. Int J Mol Sci 2023; 24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.
Collapse
Affiliation(s)
- Xiaofei Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duanxing Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
25
|
Xie S, Li Z, Li H, Fang Y. Integration of carbon capture with heterogeneous catalysis toward methanol production: chemistry, challenges, and opportunities. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2023.2166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shaoqu Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhuoxi Li
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Hengde Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
26
|
First principles investigations of structural and electronic properties of Ga-doped ZnZrO solid solutions for catalytic reduction of CO2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Lawes N, Gow IE, Smith LR, Aggett KJ, Hayward JS, Kabalan L, Logsdail AJ, Slater TJA, Dearg M, Morgan DJ, Dummer NF, Taylor SH, Bowker M, Catlow CRA, Hutchings GJ. Methanol synthesis from CO 2 and H 2 using supported Pd alloy catalysts. Faraday Discuss 2023; 242:193-211. [PMID: 36189732 DOI: 10.1039/d2fd00119e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts show poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1 : 1 β-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, with the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heat of mixing was calculated for a variety of alloy compositions with high values determined for both PdZn and Pd2Ga alloys, at ca. -0.6 eV per atom and ca. -0.8 eV per atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa, when in the presence of Ga2O3.
Collapse
Affiliation(s)
- Naomi Lawes
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Isla E Gow
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louise R Smith
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Kieran J Aggett
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - James S Hayward
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Lara Kabalan
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Andrew J Logsdail
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Thomas J A Slater
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Malcolm Dearg
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - David J Morgan
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Nicholas F Dummer
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Stuart H Taylor
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Michael Bowker
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - C Richard A Catlow
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Graham J Hutchings
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
28
|
Recent trend of metal promoter role for CO2 hydrogenation to C1 and C2+ products. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
29
|
Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support. Catalysts 2022. [DOI: 10.3390/catal13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and covered by a cross-linked pyridylphenylene polymer layer. The decomposition of Cr, Zn, and Ni precursors in the presence of supports containing magnetic oxide led to formation of amorphous metal oxides evenly distributed over the support-polymer space, together with the partial diffusion of metal species into magnetic NPs. We demonstrated the catalytic activity of Cr2O3 in the hydrogenation reaction of CO2 to methanol, which was further increased by 50% and 204% by incorporation of Ni and Zn species, respectively. The fine intermixing of metal species ensures an enhanced methanol productivity. Careful adjustment of constituent elements, e.g., catalytic metal, type of support, presence of magnetic NPs, and deposition of hydrophobic polymer layer contributes to the synergetic promotional effect required for activation of CO2 molecules as well. The results of catalytic recycle experiments revealed excellent stability of the catalysts due to protective role of hydrophobic polymer.
Collapse
|
30
|
Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Feng S, Geng Y, Liu H, Li H. Targeted Intermetallic Nanocatalysts for Sustainable Biomass and CO 2 Valorization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shumei Feng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hongyan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| |
Collapse
|
32
|
Sun Y, Zhang J, Zhou D, Wang D, Wang Q, Tan X, Shao X. Tailoring the Dispersion of Metals on ZnO with Preadsorbed Water. J Phys Chem Lett 2022; 13:10207-10215. [PMID: 36287143 DOI: 10.1021/acs.jpclett.2c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dispersity of metal particles over oxide surfaces is generally critical for the applications of the metal/oxide hybridized systems. In this work, we have experimentally investigated the hydration effect of preadsorbed water species over the Cu and Pd particles deposited on the ZnO(10-10) surface. Using scanning tunneling microscopy (STM), we clearly saw that both Cu and Pd grow as three-dimensional particles on the clean ZnO(10-10) surface but disperse into single atoms and few-atom clusters on the water-covered surfaces. Moreover, X-ray photoelectron spectroscopy (XPS) measurements revealed that Cu is readily oxidized by interacting with the molecular water while Pd tends to bind the surface hydroxyls and keep neutral status. Our work has demonstrated the effective role of the surface water in tuning the morphologies as well as electronic states of the supported metals, which may bring new insights to a number of important surface processes with water in presence.
Collapse
Affiliation(s)
- Yuniu Sun
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiefu Zhang
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dandan Zhou
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dan Wang
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingqing Wang
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaolin Tan
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Shao
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
The Activity of Ultrafine Cu Clusters Encapsulated in Nano-Zeolite for Selective Hydrogenation of CO2 to Methanol. Catalysts 2022. [DOI: 10.3390/catal12111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Narrowly dispersed ultrafine Cu clusters of sizes smaller than 2.0 nm have been encapsulated in nanosized silicalite-1 zeolite through direct crystallization in the presence of Cu(en)22+ complex ions as the metal precursor. The growing silicalite-1 crystals are rich in vacancy defects and connectivity defects on the grain boundaries, where the terminating silanols promote the decomposition of Cu(en)22+, thus the deposition of ultrafine Cu species. The obtained composite material as a model catalyst is active for CO2 activation and hydrogenation to methanol. The preliminary in situ FTIR study recognizes a series of surface-adsorbed carbonyl, formyl, carbonate, and formate species when the material is exposed to CO2 and H2. Among others, the adsorbed formate decays most rapidly upon cofeeding CO2 and H2, implying that the most probable pathway toward methanol formation over this material is via the formate-mediated mechanism.
Collapse
|
34
|
Yuan Y, Qi L, Guo T, Hu X, He Y, Guo Q. A review on the development of catalysts and technologies of CO 2 hydrogenation to produce methanol. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2135505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yongning Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Liyue Qi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Tuo Guo
- Department of Chemistry, University College London, London, UK
| | - Xiude Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Yurong He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Qingjie Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
- Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
35
|
Barberis L, Hakimioun AH, Plessow PN, Visser NL, Stewart JA, Vandegehuchte BD, Studt F, de Jongh PE. Competition between reverse water gas shift reaction and methanol synthesis from CO 2: influence of copper particle size. NANOSCALE 2022; 14:13551-13560. [PMID: 36000554 DOI: 10.1039/d2nr02612k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals and fuels, such as methanol, is a promising approach to limit the environmental impact of human activities. Conventional methanol synthesis catalysts have shown limited efficiency and poor stability in a CO2/H2 mixture. To design improved catalysts, crucial for the effective utilization of CO2, an in-depth understanding of the active sites and reaction mechanism is desired. The catalytic performance of a series of carbon-supported Cu catalysts, with Cu particle sizes in the range of 5 to 20 nm, was evaluated under industrially relevant temperature and pressure, i.e. 260 °C and 40 bar(g). The CO2 hydrogenation reaction exhibited clear particle size effects up to 13 nm particles, with small nanoparticles having the lower activity, but higher methanol selectivity. MeOH and CO formation showed a different size-dependence. The TOFCO increased from 1.9 × 10-3 s-1 to 9.4 × 10-3 s-1 with Cu size increasing from 5 nm to 20 nm, while the TOFMeOH was size-independent (8.4 × 10-4 s-1 on average). The apparent activation energies for MeOH and CO formation were size-independent with values of 63 ± 7 kJ mol-1 and 118 ± 6 kJ mol-1, respectively. Hence the size dependence was ascribed to a decrease in the fraction of active sites suitable for CO formation with decreasing particle size. Theoretical models and DFT calculations showed that the origin of the particle size effect is most likely related to the differences in formate coverage for different Cu facets whose abundancy depends on particle size. Hence, the CO2 hydrogenation reaction is intrinsically sensitive to the Cu particle size.
Collapse
Affiliation(s)
- Laura Barberis
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Amir H Hakimioun
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
36
|
Bahruji H, Abdul Razak S, Mahadi AH, Prasetyoko D, Sholehah NA, Jiao Y. PdZn on ZSM-5 nanoparticles for CO2 hydrogenation to dimethyl ether: comparative in situ analysis with Pd/TiO2 and PdZn/TiO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Yu J, Zeng Y, Lin W, Lu X. Hydrogenation of CO 2 to methanol over In-doped m-ZrO 2: a DFT investigation into the oxygen vacancy size-dependent reaction mechanism. Phys Chem Chem Phys 2022; 24:23182-23194. [PMID: 36129075 DOI: 10.1039/d2cp02788g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective methanol synthesis via CO2 hydrogenation has been thoroughly investigated over defective In-doped m-ZrO2 using density functional theory (DFT). Three types of oxygen vacancies (Ovs) generated either at the top layer (O1_v and O4_v) or at the subsurface layer (O2_v) are chosen as surface models due to low Ov formation energy. Surface morphology reveals that O1_v has smaller oxygen vacancy size than O4_v. Compared with perfect In@m-ZrO2, indium on both O1_v and O4_v is partially reduced, whereas the Bader charge of In on O2_v remains almost the same. Our calculations show that CO2 is moderate in adsorption energy (∼-0.8 eV) for all investigated surface models, which facilitates the formate pathway for both O1_v and O4_v. O2_v is not directly involved in CO2 methanolization but could readily transform into O1_v once CO2/H2 feed gas is introduced. Based on the results, the synthesis of methanol from CO2 hydrogenation turns out to exhibit conspicuous vacancy size-dependency for both O1_v and O4_v. The reaction mechanism for small-sized O1_v is controlled by both the vacancy size effect and surface reducibility effect. Thus, H2COO* favors direct C-O bond cleavage (c-mechanism) before further hydrogenation to methanol, which is similar to the defective In2O3. The vacancy size effect is more competitive than the surface reducibility effect for large-sized O4_v. Therefore, H2COO* prefers protonation to H2COOH before C-O bond cleavage (p-mechanism) which is similar to the ZnO-ZrO2 solid solution. Furthermore, we also determined that stable-CH3O*, which is too stable to be hydrogenated, originates from the O1_v surface. In contrast, CH3O* with similar configuration is allowed to be further converted to methanol on O4_v. Overall, our findings offer a new perspective towards how reaction mechanisms are determined by the size of oxygen vacancies.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistryand Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Yabing Zeng
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China. .,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, Fujian, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistryand Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China. .,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
38
|
Zhao H, Yu R, Ma S, Xu K, Chen Y, Jiang K, Fang Y, Zhu C, Liu X, Tang Y, Wu L, Wu Y, Jiang Q, He P, Liu Z, Tan L. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00840-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Sang G, Ran J, Huang X, Ou Z, Tang L. Understanding the role of Ga on the activation mechanism of CO2 over modified Cu surface by DFT calculation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Li H, Wang L, Gao X, Xiao FS. Cu/ZnO/Al 2O 3 Catalyst Modulated by Zirconia with Enhanced Performance in CO 2 Hydrogenation to Methanol. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hangjie Li
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Liang Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Feng-Shou Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Fayisa BA, Yang Y, Zhen Z, Wang MY, Lv J, Wang Y, Ma X. Engineered Chemical Utilization of CO 2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Busha Assaba Fayisa
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ziheng Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei-Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
43
|
Zhang H, Wang X, Liu P. Reaction-driven selective CO 2 hydrogenation to formic acid on Pd(111). Phys Chem Chem Phys 2022; 24:16997-17003. [PMID: 35730189 DOI: 10.1039/d2cp01971j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of CO2 to useful fuels and chemicals has gained great attention in the past decades; yet the challenge persists due to the inert nature of CO2 and the wide range of products formed. Pd-based catalysts are extensively studied to facilitate CO2 hydrogenation to methanol via a reverse water gas shift (rWGS) pathway or formate pathway where formic acid may serve as an intermediate species. Here, we report the selective production of formic acid on the stable Pd(111) surface phase under CO2 hydrogenation conditions, which is fully covered by chemisorbed hydrogen, using combined Density Functional Theory (DFT) and Kinetic Monte Carlo (KMC) simulations. The results show that with the full coverage of hydrogen, instead of producing methanol as reported for Pd(111), the CO2 activation is highly selective to formic acid via a multi-step process involving the carboxyl intermediate. The high formic acid selectivity is associated with surface hydrogen species on Pd(111), which not only acts as a hydrogen reservoir to facilitate the hydrogenation steps, but also enables the formation of confined vacancy sites to facilitate the production and removal of formic acid. Our study highlights the importance of reactive environments, which can transform the surface structures and thus tune the activity/selectivity of catalysts.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Xuelong Wang
- Chemistry Division, Brookhaven National Lab, Upton, NY 11973, USA
| | - Ping Liu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. .,Chemistry Division, Brookhaven National Lab, Upton, NY 11973, USA
| |
Collapse
|
44
|
Liu X, Luo J, Wang H, Huang L, Wang S, Li S, Sun Z, Sun F, Jiang Z, Wei S, Li WX, Lu J. In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO 1-x /Cu Interfaces for Methanol Synthesis from CO 2. Angew Chem Int Ed Engl 2022; 61:e202202330. [PMID: 35322514 DOI: 10.1002/anie.202202330] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/16/2022]
Abstract
The active site of the industrial Cu/ZnO/Al2 O3 catalyst used in CO2 hydrogenation to methanol has been debated for decades. Grand challenges remain in the characterization of structure, composition, and chemical state, both microscopically and spectroscopically, and complete theoretical calculations are limited when it comes to describing the intrinsic activity of the catalyst over the diverse range of structures that emerge under realistic conditions. Here a series of inverse model catalysts of ZnO on copper hydroxide were prepared where the size of ZnO was precisely tuned from atomically dispersed species to nanoparticles using atomic layer deposition. ZnO decoration boosted methanol formation to a rate of 877 gMeOH kgcat -1 h-1 with ≈80 % selectivity at 493 K. High pressure in situ X-ray absorption spectroscopy demonstrated that the atomically dispersed ZnO species are prone to aggregate at oxygen-deficient ZnO ensembles instead of forming CuZn metal alloys. By modeling various potential active structures, density functional theory calculations and microkinetic simulations revealed that ZnO/Cu interfaces with oxygen vacancies, rather than stoichiometric interfaces, Cu and CuZn alloys were essential to catalytic activation.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Luo
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Hengwei Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Shasha Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Shang Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Fanfei Sun
- Shanghai Advanced Research Institute, Chinese Academy of Science, China Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai, 201204, China
| | - Zheng Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Science, China Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai, 201204, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wei-Xue Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Junling Lu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
45
|
Oxygen Vacancies in Cu/TiO2 Boost Strong Metal-Support Interaction and CO2 Hydrogenation to Methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Arango-Daza JC, Lluna-Galán C, Izquierdo-Aranda L, Cabrero-Antonino JR, Adam R. Heterogeneous Pd-Catalyzed Efficient Synthesis of Imidazolones via Dehydrogenative Condensation between Ureas and 1,2-Diols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Juan Camilo Arango-Daza
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Carles Lluna-Galán
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Luis Izquierdo-Aranda
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Jose R. Cabrero-Antonino
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Rosa Adam
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain
| |
Collapse
|
47
|
Photocatalytic Hydrogen Gas Production from NH3 and Alkylamine: Route to Zero Carbon Emission Energy. Catal Letters 2022. [DOI: 10.1007/s10562-022-04049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Chang X, Han X, Pan Y, Hao Z, Chen J, Li M, Lv J, Ma X. Insight into the Role of Cu–ZrO 2 Interaction in Methanol Synthesis from CO 2 Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Han
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Yutong Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Ziwen Hao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Jiyi Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
49
|
Bowker M, Lawes N, Gow I, Hayward J, Esquius JR, Richards N, Smith LR, Slater TJA, Davies TE, Dummer NF, Kabalan L, Logsdail A, Catlow RC, Taylor S, Hutchings GJ. The Critical Role of βPdZn Alloy in Pd/ZnO Catalysts for the Hydrogenation of Carbon Dioxide to Methanol. ACS Catal 2022; 12:5371-5379. [PMID: 35557711 PMCID: PMC9087181 DOI: 10.1021/acscatal.2c00552] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Indexed: 11/28/2022]
Abstract
![]()
The rise in atmospheric
CO2 concentration and the concomitant
rise in global surface temperature have prompted massive research
effort in designing catalytic routes to utilize CO2 as
a feedstock. Prime among these is the hydrogenation of CO2 to make methanol, which is a key commodity chemical intermediate,
a hydrogen storage molecule, and a possible future fuel for transport
sectors that cannot be electrified. Pd/ZnO has been identified as
an effective candidate as a catalyst for this reaction, yet there
has been no attempt to gain a fundamental understanding of how this
catalyst works and more importantly to establish specific design criteria
for CO2 hydrogenation catalysts. Here, we show that Pd/ZnO
catalysts have the same metal particle composition, irrespective of
the different synthesis procedures and types of ZnO used here. We
demonstrate that all of these Pd/ZnO catalysts exhibit the same activity
trend. In all cases, the β-PdZn 1:1 alloy is produced and dictates
the catalysis. This conclusion is further supported by the relationship
between conversion and selectivity and their small variation with
ZnO surface area in the range 6–80 m2g–1. Without alloying with Zn, Pd is a reverse water-gas shift catalyst
and when supported on alumina and silica is much less active for CO2 conversion to methanol than on ZnO. Our approach is applicable
to the discovery and design of improved catalysts for CO2 hydrogenation and will aid future catalyst discovery.
Collapse
Affiliation(s)
- Michael Bowker
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Catalyst Hub, RCAH, Rutherford Appleton Lab, Harwell, Oxford, Didcot OX11 0QX, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Naomi Lawes
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Isla Gow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - James Hayward
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jonathan Ruiz Esquius
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- now at: Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Nia Richards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Louise R. Smith
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas J. A. Slater
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Electron Physical Sciences Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, United Kingdom
| | - Thomas E Davies
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Nicholas F. Dummer
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Lara Kabalan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Andrew Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Richard C. Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Catalyst Hub, RCAH, Rutherford Appleton Lab, Harwell, Oxford, Didcot OX11 0QX, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Stuart Taylor
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
50
|
Kowalec I, Kabalan L, Catlow CRA, Logsdail AJ. A computational study of direct CO 2 hydrogenation to methanol on Pd surfaces. Phys Chem Chem Phys 2022; 24:9360-9373. [PMID: 35383806 DOI: 10.1039/d2cp01019d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism of direct CO2 hydrogenation to methanol is investigated in detail on Pd (111), (100) and (110) surfaces using density functional theory (DFT), supporting investigations into emergent Pd-based catalysts. Hydrogen adsorption and surface mobility are firstly considered, with high-coordination surface sites having the largest adsorption energy and being connected by diffusion channels with low energy barriers. Surface chemisorption of CO2, forming a partially charged CO2δ-, is weakly endothermic on a Pd (111) whilst slightly exothermic on Pd (100) and (110), with adsorption enthalpies of 0.09, -0.09 and -0.19 eV, respectively; the low stability of CO2δ- on the Pd (111) surface is attributed to negative charge accumulating on the surface Pd atoms that interact directly with the CO2δ- adsorbate. Detailed consideration for sequential hydrogenation of the CO2 shows that HCOOH hydrogenation to H2COOH would be the rate determining step in the conversion to methanol, for all surfaces, with activation barriers of 1.41, 1.51, and 0.84 eV on Pd (111), (100) and (110) facets, respectively. The Pd (110) surface exhibits overall lower activation energies than the most studied Pd (111) and (100) surfaces, and therefore should be considered in more detail in future Pd catalytic studies.
Collapse
Affiliation(s)
- Igor Kowalec
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Lara Kabalan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | - C Richard A Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. .,UK Catalysis Hub, Research Complex at Harwell, RAL, Oxford, OX11 0FA, UK.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|