1
|
Guang B, Zhang W, Wu Y, Xiao Y, Su M, Liu Y. Dual Sulfonic Acid Functionalized Heteropolyacid-Based Ionic Liquids for Esterification of Glycerol Toward Triacetylglycerol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Glycerol monolaurate beyond an emulsifier: Synthesis, in vivo fate, food quality benefits and health efficacies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Zhang Q, Ren M, Liu Y, Zhang C, Guo Y, Song D. Fabrication of Brønsted acidic ionic liquids functionalized organosilica nanospheres for microwave-assisted fructose valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151761. [PMID: 34801500 DOI: 10.1016/j.scitotenv.2021.151761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
A series of Brønsted acidic ionic liquids (BAILs) functionalized hollow organosilica nanospheres ([C3/4Im][OTs/OTf]-Si(Et)Si, C3/4 = Pr/BuSO3H) were synthesized by two steps. The process involved the preparation of hollow nanosphere supports via a toluene-swollen sol-gel co-condensation of 1,2-bis(trimethoxysilyl)ethane and 3-chloropropyltriethoxysilane in the presence of F127, and followed by a successive quaternary ammonization and protonation with imidazole, 1,3-propane/1,4-butane sultone and trifluoromethane sulfonic acid/p-toluenesulfonic acid. The adjustable acid property, hollow inner diameter (5-15 nm) and shell thickness (5-9 nm) of [C3/4Im][OTs/OTf]-Si(Et)Si are achieved by introducing different organic acids and controlling toluene concentration, respectively. The [C3/4Im][OTs/OTf]-Si(Et)Si were applied in selective conversion of fructose to 5-hydroxymethylfurfural (HMF) and 5-ethoxymethylfurfural (EMF) under microwave heating. Under the optimized conditions, the [C4Im][OTs]-Si(Et)Si3.0 nanospheres with the largest inner diameter and the smallest shell thickness exhibit the highest HMF yield (79.4%, 15 min) in fructose dehydration. And the [C3Im][OTf]-Si(Et)Si0.5 nanospheres with the highest acid strength possess the highest EMF yield (70.4%, 30 min) in fructose ethanolysis. The high Brønsted acid-site density and acid strength of [C3/4Im][OTs/OTf]-Si(Et)Si catalysts accompanied by high microwave heating energy lead to excellent dehydration/ethanolysis activity. The product selectivity strongly depended on the BAILs structures and morphological characteristics of the catalyst. More importantly, the [C3/4Im][OTs/OTf]-Si(Et)Si can be reused three times without changes in leaching of BAILs, due to strong covalent bond between BAILs and silicon/carbon framework. This work will provide a simple strategy of chemically bonded BAILs on suitable supports as efficient solid acids, and an approach of combining morphology-controlled solid acids with microwave-heating for catalytic conversion of biomass/derivatives to fuels and value-added chemicals.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Miao Ren
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yunqing Liu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Chaoyue Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yihang Guo
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Daiyu Song
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
4
|
Jiang Y, Zhou R, Zhao H, Ye B, Long Y, Wang Z, Hou Z. A highly active and stable organic-inorganic combined solid acid for the transesterification of glycerol under mild conditions. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63811-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Sahani S, Upadhyay SN, Sharma YC. Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shalini Sahani
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Yogesh Chandra Sharma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Abd Razak NN, Pérès Y, Gew LT, Cognet P, Aroua MK. Effect of Reaction Medium Mixture on the Lipase Catalyzed Synthesis of Diacylglycerol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nurul Nadiah Abd Razak
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor 47500, Malaysia
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31006, France
| | - Yolande Pérès
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31006, France
| | - Lai Ti Gew
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor 47500, Malaysia
| | - Patrick Cognet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31006, France
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology, Sunway University, Petaling Jaya, Selangor 47500, Malaysia
- Department of Engineering, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
7
|
Zhang J, Li X, Xu M, Yang Y, Li Y, Liu N, Meng X, Chen L, Shi S, Wei M. Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature. Sci Bull (Beijing) 2019; 64:1764-1772. [PMID: 36659535 DOI: 10.1016/j.scib.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/31/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023]
Abstract
Glycerol (GLY) aerobic oxidation in an aqueous solution is one of the most prospective pathways in biomass transformation, where the supported catalysts based on noble metals (mainly Au, Pd, Pt) are most commonly employed. Herein, Pt nanoparticles supported on rehydrated MgxAl1-hydrotalcite (denoted as re-MgxAl1-LDH-Pt) were prepared via impregnation-reduction method followed by an in situ rehydration process, which showed high activity and selectivity towards GLY oxidation to produce glyceric acid (GLYA) at room temperature. The metal-support interfacial structure and catalyst basicity were modulated by changing the Mg/Al molar ratio of the hydrotalcite precursor, and the optimal performance was achieved on re-Mg6Al1-LDH-Pt with a GLY conversion of 87.6% and a GLYA yield of 58.6%, which exceeded the traditional activated carbon and oxide supports. A combinative study on structural characterizations (XANES, CO-FTIR spectra, and benzoic acid titration) proves that a higher Mg/Al molar ratio promotes the formation of positively charged Ptδ+ species at metal-support interface, which accelerates bond cleavage of α-C-H and improves catalytic activity. Moreover, a higher Mg/Al molar ratio provides a stronger basicity of support that contributes to the oxidation of terminal-hydroxyl and thus enhances the selectivity of GLYA. This catalyst with tunable metal-support interaction shows prospective applications toward transformation of biomass-based polyols.
Collapse
Affiliation(s)
- Junbo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Xu
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yinwen Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuxian Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Abdullah R, Mohamed Saleh SN, Embong K, Abdullah AZ. Recent developments and potential advancement in the kinetics of catalytic oxidation of glycerol. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1641699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rozaini Abdullah
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, Padang Besar, Perlis, Malaysia
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Syamima Nasrin Mohamed Saleh
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Kartina Embong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Fabrication of Hollow Silica Nanospheres with Ultra-High Acid Density for Efficient Heterogeneous Catalysis. Catalysts 2019. [DOI: 10.3390/catal9050481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hollow silica nanospheres with ultra-high acid density were fabricated successfully via sulfonation of phenyl-functionalized hollow silica nanospheres, which were synthesized through a single micelle (F127 (EO106PO70EO106))-templated method, with phenyltrimethoxysilane and tetramethoxysilane (TMOS) as silane precursors under neutral conditions. The density of sulfonic acid reached as high as 1.97 mmol/g. The characterization results of 31P-NMR using triethylphosphine oxide as a probe molecule suggested that the acid strength of hybrid solid acids could be systematically tuned by tuning the content of sulfonic acid and higher acid density results in stronger acid strength. Attributed to the unique hollow structure and high-acid density, the sulfonic acid-functionalized hollow silica nanospheres exhibited good catalytic performance in the condensation reaction of benzaldehyde with ethylene glycol. Notably, this study found that the catalytic activity was significantly influenced by the acid density and the ultra-high acid loading was beneficial for the activity due to the enhanced acid strength. This novel solid-acid catalyst also showed good recyclability and could be reused for at least 11 runs.
Collapse
|
10
|
An S, Wang Z, Zhang H, Miras HN, Song Y. Self‐Organization of Ionic Liquid‐Modified Organosilica Hollow Nanospheres and Heteropolyacids: Efficient Preparation of 5‐HMF Under Mild Conditions. ChemCatChem 2019. [DOI: 10.1002/cctc.201900285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sai An
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P.R. China
| | - Zelin Wang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P.R. China
| | - Huaiying Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P.R. China
| | - Haralampos N. Miras
- WestCHEM School of ChemistryUniversity of Glasgow Glasgow G12 8QQ United Kingdom
| | - Yu‐Fei Song
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P.R. China
| |
Collapse
|
11
|
Mao Z, Cao L, Zhang F, Zhang F. Microwave-Assisted Rapid Preparation of Mesoporous Phenolic Resin Nanospheres toward Highly Efficient Solid Acid Catalysts. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28709-28718. [PMID: 30086220 DOI: 10.1021/acsami.8b10410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel microwave-assisted polymerization and self-assembly protocol was developed to prepare ordered mesoporous phenolic resin (MPRN) with nanospherical morphology for the first time. This unique strategy dramatically saved the synthesis time about 2 days with an energy-efficient way. Owing to its abundant phenyl groups in the framework, it was easily transformed to benzenesulfonic acid-functionalized MPRN (SO3H-MPRN) by simple sulfonation treatment. The obtained SO3H-MPRN sample still possessed a large surface area, two-dimensional hexagonal mesoporous structure, and uniform spherical shape. Importantly, because of its intrinsic organic framework, the pore surface of SO3H-MPRN was hydrophobic. Accordingly, it exhibited the excellent catalytic activity and selectivity in aqueous formaldehyde-participated Prins reaction and water-medium Fischer-indole reaction. On the basis of material characterizations and the control experiments, this remarkable catalytic performance could be ascribed to the synergetic effect derived from its short mesoporous channel and hydrophobic pore surface, which resulted in the decreased reactant diffusion limitation and the reduced water competitive adsorption. Also, it was stable in water because of the periodically arranged acid species in the resin framework and thus was easily recycled and used repetitively for at least five times.
Collapse
Affiliation(s)
- Zhan Mao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Linqing Cao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Fei Zhang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Fang Zhang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
12
|
Effect of Surface Modifications of SBA-15 with Aminosilanes and 12-Tungstophosphoric Acid on Catalytic Properties in Environmentally Friendly Esterification of Glycerol with Oleic Acid to Produce Monoolein. Catalysts 2018. [DOI: 10.3390/catal8090360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of protonated amino-functionalized SBA-15 materials was synthesized and tested as heterogeneous catalysts for the esterification of glycerol with oleic acid to produce monoolein. Mesoporous SBA-15 (S) was functionalized with three different aminosilanes: 3-aminopropyltriethoxysilane (N1); [3-(2-amino-ethylamino)propyltrimethoxysilane] (N2); and (3-trimethoxysilylpropyl) diethylenetriamine (N3), before being impregnated with 40 wt % 12-tungstophosphoric acid (HPW). The resulting nanocatalysts (S-Nx-HPW) were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption, SEM equipped with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), and elemental analysis techniques. The presence of components of the nanocatalysts and the preservation of the hexagonal structure of SBA-15 were confirmed. Using different functionalizing agents considerably affected the textural properties and acidity of the synthesized nanocatalysts, which helped to improve the catalytic performance. In particular, S-N2-HPW was more active and selective than other catalysts in this study, as well as than a number of other commercial acid catalysts, with 95.0% oleic acid conversion and 60.9% monoolein selectivity being obtained after five h of reaction at 160 °C using 2.5 wt % of catalyst loading and glycerol/oleic acid molar ratio of 4:1. Aminosilane functionalization also helped to increase the reusability of the catalysts to at least six cycles without considerable loss of activity through strong electrostatic interactions between HPW anions and the protonated amino-functionalized SBA-15 materials.
Collapse
|
13
|
Noshadi I, Carrie C, Borovilas J, Kanjilal B, Liu F. Efficient Transformation of Waste Bone Oil into High Quality Biodiesel via a Synergistic Catalysis of Porous Organic Polymer Solid Acid and Porous γ-Al2O3-K2O Solid Base. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iman Noshadi
- Department
of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Christopher Carrie
- Department
of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - John Borovilas
- Department
of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Baishali Kanjilal
- Institute
of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Fujian Liu
- National
Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC),
School of Chemical Engineering, Fuzhou University, Gongye Road No. 523, Fuzhou 350002, Fujian, PR China
| |
Collapse
|