1
|
Wang Q, Sang K, Liu C, Zhang Z, Chen W, Ji T, Li L, Lian C, Qian G, Zhang J, Zhou X, Yuan W, Duan X. Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation. Nat Commun 2024; 15:3249. [PMID: 38627484 PMCID: PMC11021464 DOI: 10.1038/s41467-024-47538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The development of sustainable and anti-poisoning single-atom catalysts (SACs) is essential for advancing their research from laboratory to industry. Here, we present a proof-of-concept study on the poisoning of Au SACs, and the antidote of Au nanoparticles (NPs), with trace addition shown to reinforce and sustain propylene epoxidation. Multiple characterizations, kinetics investigations, and multiscale simulations reveal that Au SACs display remarkable epoxidation activity at a low propylene coverage, but become poisoned at higher coverages. Interestingly, Au NPs can synergistically cooperate with Au SACs by providing distinct active sites required for H2/O2 and C3H6 activations, as well as hydroperoxyl radical to restore poisoned SACs. The difference in reaction order between C3H6 and H2 (nC3H6-nH2) is identified as the descriptor for establishing the volcano curves, which can be fine-tuned by the intimacy and composition of SACs and NPs to achieve a rate-matching scenario for the formation, transfer, and consumption of hydroperoxyl. Consequently, only trace addition of Au NPs antidote (0.3% ratio of SACs) stimulates significant improvements in propylene oxide formation rate, selectivity, and H2 efficiency compared to SACs alone, offering a 56-fold, 3-fold, and 22-fold increase, respectively, whose performances can be maintained for 150 h.
Collapse
Affiliation(s)
- Qianhong Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changwei Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Te Ji
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
2
|
Yang J, Liu S, Liu Y, Zhou L, Wen H, Wei H, Shen R, Wu X, Jiang J, Li B. Review and perspectives on TS-1 catalyzed propylene epoxidation. iScience 2024; 27:109064. [PMID: 38375219 PMCID: PMC10875142 DOI: 10.1016/j.isci.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Titanium silicate zeolite (TS-1) is widely used in the research on selective oxidations of organic substrates by H2O2. Compared with the chlorohydrin process and the hydroperoxidation process, the TS-1 catalyzed hydroperoxide epoxidation of propylene oxide (HPPO) has advantages in terms of by-products and environmental friendliness. This article reviews the latest progress in propylene epoxidation catalyzed by TS-1, including the HPPO process and gas phase epoxidation. The preparation and modification of TS-1 for green and sustainable production are summarized, including the use of low-cost feedstocks, the development of synthetic routes, strategies to enhance mass transfer in TS-1 crystal and the enhancement of catalytic performance after modification. In particular, this article summarizes the catalytic mechanisms and advanced characterization techniques for propylene epoxidation in recent years. Finally, the present situation, development prospect and challenge of propylene epoxidation catalyzed by TS-1 were prospected.
Collapse
Affiliation(s)
- Jimei Yang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, P.R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Huijuan Wei
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| |
Collapse
|
3
|
Using Ammonia Solution to Fabricate Highly Active Au/Uncalcined TS‑1 Catalyst for Gas-phase Epoxidation of Propylene. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Du T, Zhang Y, Chao Y, An Y, Meng C. In situ growth of hierarchical phase junction CdS on a H-mordenite zeolite for enhanced photocatalytic properties. Dalton Trans 2022; 51:12975-12985. [PMID: 35959793 DOI: 10.1039/d2dt01549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kind of cadmium sulfide (CdS) nanocomposite with different crystalline phases was grown on the surface of H-mordenite zeolite (HMOR) by a chemical liquid-phase co-precipitation method. In this work, 2 wt% CdS@HMOR photocatalytic material with the coexistence phase (hexagonal phase and cubic phase) of cadmium sulfide was grown on the surface of HMOR by controlling the reaction temperature and ammonia concentration. Photocatalytic degradation of methylene blue (MB) was used as an index to detect the photocatalytic performance of materials. The results indicated that the photocatalytic degradation efficiency of the system with HMOR was significantly improved in comparison to that without HMOR (CdS, 40.34%, 0.2578 h-1). It was found that 2 wt% CdS@HMOR had the best photocatalytic activity. The degradation rate of MB was 84.15% in 2 h, and the degradation rate constant was 0.8884 h-1. When 1.5 ml H2O2 was introduced into the system, the degradation rate of MB was increased to 98.98%, and the degradation rate constant was 1.9976 h-1. SEM, HRTEM, PL, EIS and photocurrent showed that the cubic and hexagonal phases of CdS were in contact with each other on the HMOR surface, forming a good electron transport. By XRD, XPS and SEM tests, the results of materials after four cycles of reactions showed that the structure of the 2 wt% CdS@HMOR was still stable. Therefore, HMOR may provide a good support for CdS, and the synergistic effect between them is beneficial for the occurrence of photocatalytic reactions. HMOR can act as an electron receptor to inhibit the recombination of carriers. The homo-junction between different phases of CdS on the surface of HMOR is beneficial to the separation of photo-induced carriers. These results indicate that the construction of phase heterojunctions on zeolites and the synergism among them are a method for improving the photocatalytic activity.
Collapse
Affiliation(s)
- Teng Du
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yifu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yue Chao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yonglin An
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
5
|
Performance, Reaction Pathway, and Pretreatment of Au Catalyst Precursor in H2/O2 Atmosphere for the Epoxidation of Propylene. Catalysts 2022. [DOI: 10.3390/catal12050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gas-phase epoxidation of propylene in the copresence of H2 and O2 was performed over the catalyst of Au on as-synthesized TS-1 that contained a small amount of anatase TiO2. The catalytic performance was studied by washing or nonwashing the catalyst precursor to modulate the content of purity (K, Cl) and then calcining the samples in O2 or H2 prior to reaction. The results show that the catalytic performance of Au/TS-1 can be improved without washing (more K+ and Au maintained) and O2 pretreatment. It was found that the calcination in O2 was able to maintain more metallic Au and form more surface-active oxygen species and thus providing a better yield of propylene oxide with the assistance of potassium. Interestingly, more acrolein can be produced over the catalysts with respect to the in situ calcination in O2 than that in H2 when the feed only contained 10% O2 and 10% propylene in argon, while there was no formation of propylene oxide. On the other hand, the catalyst precursor calcined in H2 prefers the formation of successive oxygenates of PO.
Collapse
|
6
|
Wang G, Du W, Zhang Z, Tang Y, Xu J, Cao Y, Qian G, Duan X, Yuan W, Zhou X. Combining trace Pt with surface silylation to boost Au/uncalcined
TS
‐1 catalyzed propylene epoxidation with
H
2
and
O
2
. AIChE J 2021. [DOI: 10.1002/aic.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Wei Du
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yanqiang Tang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Jialun Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
7
|
Zhou XT, Yu HY, Li Y, Xue C, Ji HB. Cerium(IV) Sulfate as a Cocatalyst for Promoting the Direct Epoxidation of Propylene by Ruthenium Porphyrin with Molecular Oxygen. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yang Li
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China
| |
Collapse
|
8
|
Nitrogen Monoxide and Soot Oxidation in Diesel Emissions with Platinum–Tungsten/Titanium Dioxide Catalysts: Tungsten Loading Effect. Catalysts 2020. [DOI: 10.3390/catal10111283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Compared with Pt/TiO2, tungsten-loaded Pt–W/TiO2 catalysts exhibit improved activity for NO and soot oxidation. Using catalysts prepared by an incipient wetness method, the tungsten loading effect was investigated using Brunauer–Emmett–Teller surface areas, X-ray diffraction, transmission electron microscopy (TEM), CO pulse chemisorption, H2 temperature-programmed reduction, NH3 temperature-programmed desorption (NH3-TPD), and pyridine Fourier transform infrared (FT-IR) spectroscopy. Loading tungsten on the Pt/TiO2 catalyst reduced the platinum particle size, as revealed in TEM images. CO pulse chemisorption showed that platinum was covered with tungsten and the dispersion of platinum decreased when 5 wt.% or more of tungsten was loaded. The NH3-TPD and pyridine-FT-IR results demonstrated that the number of strong acid sites and Brønsted acid sites in the catalyst were increased by the presence of tungsten. Therefore, a catalyst containing an appropriate amount of tungsten increased the dispersion of platinum, thereby increasing the number of active sites for NO and soot oxidation, and increased the acidity of the catalyst, thereby increasing the activity of soot oxidation by NO2
Collapse
|
9
|
The Construction of Au–Fe–TS-1 Interface Coupling Structure for Improving Catalytic Performance of Propylene Epoxidation with H2 and O2. Catal Letters 2020. [DOI: 10.1007/s10562-020-03222-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Advances in Designing Au Nanoparticles for Catalytic Epoxidation of Propylene with H2 and O2. Catalysts 2020. [DOI: 10.3390/catal10040442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Au nanoparticles, which can be used in various industrial and environmental applications, have drawn substantial research interest. In this review, a comprehensive background and some insights are provided regarding recent studies concerning the use of Au nanoparticles for catalytic propylene epoxidation with H2 and O2. Over the last two decades, substantial progress has been made toward the efficient production of propylene oxide (PO); this includes the design of highly dispersed Au catalysts on Ti-modified mesoporous silica supports, the optimization of catalytic epoxidation, and the determination of the mechanisms and reaction pathways of epoxidation. Particularly, the critical roles of catalyst synthesis, the types of material support, Au nanoparticle sizes, and the dispersion amounts of Au nanoparticles are emphasized in this review. In future studies, novel, practical, robust, and highly PO-selective Au nanoparticle catalyst systems are expected to be continually designed for the enhanced catalytic epoxidation of propylene.
Collapse
|
11
|
Ishida T, Murayama T, Taketoshi A, Haruta M. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem Rev 2019; 120:464-525. [DOI: 10.1021/acs.chemrev.9b00551] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Ayako Taketoshi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masatake Haruta
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
12
|
Hong Y, Huang J, Zhan G, Li Q. Biomass-Modified Au/TS-1 as Highly Efficient and Stable Nanocatalysts for Propene Epoxidation with O2 and H2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingling Hong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
13
|
Wang G, Cao Y, Zhang Z, Xu J, Lu M, Qian G, Duan X, Yuan W, Zhou X. Surface Engineering and Kinetics Behaviors of Au/Uncalcined TS-1 Catalysts for Propylene Epoxidation with H2 and O2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gang Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jialun Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengke Lu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Chen J, Wu Z, Liu H, Bao X, Yuan P. A Surface-Cofunctionalized Silica Supported Palladium Catalyst for Selective Hydrogenation of Nitrile Butadiene Rubber with Enhanced Catalytic Activity and Recycling Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Haiyan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xiaojun Bao
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Pei Yuan
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
15
|
Bhaduri K, Das BD, Kumar R, Mondal S, Chatterjee S, Shah S, Bravo-Suárez JJ, Chowdhury B. Recyclable Au/SiO 2-Shell/Fe 3O 4-Core Catalyst for the Reduction of Nitro Aromatic Compounds in Aqueous Solution. ACS OMEGA 2019; 4:4071-4081. [PMID: 31459616 PMCID: PMC6649094 DOI: 10.1021/acsomega.8b03655] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 05/19/2023]
Abstract
Highly stable gold nanoparticles immobilized on the surface of amine-functionalized nanocomposite microspheres possessing a magnetite (Fe3O4) nanoparticle core and a silica (SiO2) shell (Au/SiO2-shell/Fe3O4-core) were prepared. These gold nanocomposite catalysts were tested for 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA) reduction in aqueous solution in the temperature range 293-323 K and in the presence of aqueous NaBH4 reducing agent. The magnetically recyclable gold catalyst showed high stability (∼3 months), efficient recyclability (up to 10 cycles), and high activity (∼100% conversion within 225 s, ∼700 ppm 4-NP or 2-NA). The pseudo-first-order apparent reaction rate constants (k) of 4-NP and 2-NA reduction were 7.5 × 10-3 and 4.1 × 10-3 s-1, respectively, and with an apparent catalytic activity of 4.48 × 10-8 kmol/(m3 s).
Collapse
Affiliation(s)
- Kushanava Bhaduri
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Bidya Dhar Das
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Rawesh Kumar
- Department
of Chemistry, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Sujan Mondal
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Sauvik Chatterjee
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Sneha Shah
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Juan J. Bravo-Suárez
- Chemical
and Petroleum Engineering Department, Center for Environmentally Beneficial
Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
- E-mail: (J.J.B.-S.)
| | - Biswajit Chowdhury
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
- E-mail: . Phone +91-326-223-5663, (+91)-326-2296563 (B.C.)
| |
Collapse
|
16
|
Lu M, Zhao X, Zhou J, Qian G, Duan X, Yuan W, Zhou X. Solvent Screening and Process Optimization for Separating Propylene Oxide from Direct Propylene Epoxidation with H 2 and O 2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengke Lu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuan Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinghong Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
17
|
Feng X, Yang J, Duan X, Cao Y, Chen B, Chen W, Lin D, Qian G, Chen D, Yang C, Zhou X. Enhanced Catalytic Performance for Propene Epoxidation with H2 and O2 over Bimetallic Au–Ag/Uncalcined Titanium Silicate-1 Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01324] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Feng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
| | - Jia Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bingxu Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dong Lin
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
18
|
Yan W, Wu Y, Feng X, Yang C, Jin X, Shen J. Selective propylene epoxidation in liquid phase using highly dispersed Nb catalysts incorporated in mesoporous silicates. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Li N, Chen Y, Shen Q, Yang B, Liu M, Wei L, Tian W, Zhou J. TS-1 supported highly dispersed sub-5 nm gold nanoparticles toward direct propylene epoxidation using H2 and O2. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Kanungo S, Keshri KS, Hensen EJM, Chowdhury B, Schouten JC, Neira d'Angelo MF. Direct epoxidation of propene on silylated Au–Ti catalysts: a study on silylation procedures and the effect on propane formation. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00439k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Silylation was employed on an active Au/Ti–SiO2 catalyst, in order to enhance catalyst performance for the direct epoxidation of propene to propene oxide (PO) using H2 and O2.
Collapse
Affiliation(s)
- S. Kanungo
- Laboratory of Chemical Reactor Engineering
- Department of Chemical Engineering and Chemistry Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - K. S. Keshri
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - E. J. M. Hensen
- Laboratory of Inorganic Materials Chemistry
- Schuit Institute of Catalysis
- Department of Chemical Engineering and Chemistry Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - B. Chowdhury
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - J. C. Schouten
- Laboratory of Chemical Reactor Engineering
- Department of Chemical Engineering and Chemistry Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - M. F. Neira d'Angelo
- Laboratory of Chemical Reactor Engineering
- Department of Chemical Engineering and Chemistry Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
21
|
Kanungo S, Su Y, Neira d'Angelo MF, Schouten JC, Hensen EJM. Epoxidation of propene using Au/TiO2: on the difference between H2 and CO as a co-reactant. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00525c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of the reducing gas in the direct epoxidation of propene to propene oxide (PO) using O2 over a Au/TiO2 catalyst was studied through experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Shamayita Kanungo
- Laboratory of Chemical Reactor Engineering
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- The Netherlands
| | - Yaqiong Su
- Laboratory of Inorganic Materials Chemistry
- Schuit Institute of Catalysis
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- The Netherlands
| | - M. F. Neira d'Angelo
- Laboratory of Chemical Reactor Engineering
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- The Netherlands
| | - Jaap C. Schouten
- Laboratory of Chemical Reactor Engineering
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials Chemistry
- Schuit Institute of Catalysis
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- The Netherlands
| |
Collapse
|