1
|
Caruso M, Navalón S, Cametti M, Dhakshinamoorthy A, Punta C, García H. Challenges and opportunities for N-hydroxyphthalimide supported over heterogeneous solids for aerobic oxidations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Qin L, Lu W, Wu Z, Zhou W. Catalyst Performance of the Calcined Products of CoAl Layered Double Hydroxide in the Aerobic Oxidation of Ethylbenzene. Catal Letters 2022. [DOI: 10.1007/s10562-022-04117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Qin Y, Hao M, Ding Z, Li Z. Pt@MIL-101(Fe) for efficient visible light initiated coproduction of benzimidazoles and hydrogen from the reaction between o-Phenylenediamines and alcohols. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Wang Y, Zhao L, Ji G, He C, Liu S, Duan C. Vanadium(V IV)-Porphyrin-Based Metal-Organic Frameworks for Synergistic Bimetallic Activation of Inert C(sp 3)-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2794-2804. [PMID: 34989552 DOI: 10.1021/acsami.1c20420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activation and selective functionalization of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry. Herein, by decorating vanadium(VIV)-porphyrin into metal-organic frameworks (MOFs) to stabilize the active tertbutyl peroxide radical, we reported a new approach to accomplish inert C(sp3)-H bond activation by a synergistic bimetallic strategy via a hydrogen atom transfer process under mild conditions. The stabilized peroxide radical by VIV-porphyrin-based MOFs abstracted a hydrogen atom from the inert C(sp3)-H bonds for direct oxidization transformation utilizing environmentally friendly oxygen. Taking advantage of the high stability of Zr6 clusters, the new Zr-MOF was recyclable six times without a conversion efficiency decrease. From this foundation, {Mn3(μ3-O)} cluster nodes with potential unsaturated coordinated sites were introduced into MOFs to replace Zr6 clusters, realizing the pre-activation of substrates through the interaction between Mn nodes and substrates. The synergistic bimetallic activation effect of VIV-porphyrin and Mn nodes dramatically promoted the conversion efficiency and product selectivity for inert C(sp3)-H bond functionalization.
Collapse
Affiliation(s)
- Yefei Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
5
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
6
|
Zhang HH, Zhan GP, Liu ZK, Wu CD. Photocatalytic Hydrogen Evolution Coupled with Production of Highly Value-Added Organic Chemicals by a Composite Photocatalyst CdIn 2 S 4 @MIL-53-SO 3 Ni 1/2. Chem Asian J 2021; 16:1499-1506. [PMID: 33871155 DOI: 10.1002/asia.202100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Photocatalytic water splitting coupled with the production of highly value-added organic chemicals is of significant importance, which represents a very promising pathway for transforming green solar energy into chemical energy. Herein, we report a composite photocatalyst CdIn2 S4 @MIL-53-SO3 Ni1/2 , which is highly efficient on prompting water splitting for the production of H2 in the reduction half-reaction and selective oxidation of organic molecules for the production of highly value-added organic chemicals in the oxidation half-reaction under visible light irradiation. The superior photocatalytic properties of the composite photocatalyst CdIn2 S4 @MIL-53-SO3 Ni1/2 should be ascribed to coating suspended ion catalyst (SIC), consisting of redox-active NiII ions in the anionic pores of coordination network MIL-53-SO3 - , on the surface of photoactive CdIn2 S4 , which endows photogenerated electron-hole pairs separate more efficiently for high rate production of H2 and selective production of highly value-added organic products, demonstrating great potential for practical applications.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guo-Peng Zhan
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zi-Kun Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chuan-De Wu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
7
|
Shen L, Ye D, Zhao H, Zhang J. Perspectives for Single-Atom Nanozymes: Advanced Synthesis, Functional Mechanisms, and Biomedical Applications. Anal Chem 2020; 93:1221-1231. [PMID: 33371664 DOI: 10.1021/acs.analchem.0c04084] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Single-atom nanozymes (SANs) are one of the newest generations of nanozymes, which have been greatly developed in the past few years and exploited widely for many applications, such as biosensing, disease diagnosis and therapy, bioimaging, and so on. SANs, possessing dispersed single-atom structures and a well-defined coordination environment, exhibit remarkable catalytic performance with both high activity and stability. In this paper, the most recent progress in SANs is reviewed in terms of their advanced synthesis, characterization, functional mechanisms, performance validation/optimization, and biomedical applications. Several technical challenges hindering practical applications of SANs are analyzed, and possible research directions are also proposed for overcoming the challenges.
Collapse
|
8
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Liu S, Li S, Shen X, Wang Y, Du J, Chen B, Han B, Liu H. Selective aerobic oxidation of cyclic ethers to lactones over Au/CeO 2 without any additives. Chem Commun (Camb) 2020; 56:2638-2641. [PMID: 32020139 DOI: 10.1039/c9cc09480f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective oxidation of ethers to lactones with O2 as a benign oxidant using Au/CeO2 as the catalyst has been developed. The oxygen vacancies and Au0 species on the surface of CeO2 contribute to the activation of O2. The excellent selectivity of lactones is due to the adsorption of ethers and activation of the C(sp3)-H bond on Au/CeO2.
Collapse
Affiliation(s)
- Shulin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gawande MB, Fornasiero P, Zbořil R. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04217] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
11
|
Zhao SN, Zhang Y, Song SY, Zhang HJ. Design strategies and applications of charged metal organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Guo WW, Zhang C, Ye JJ, Liu ZK, Chen K, Wu CD. Suspending Ion Electrocatalysts in Charged Metal-Organic Frameworks to Improve the Conductivity and Selectivity in Electroorganic Synthesis. Chem Asian J 2019; 14:3627-3634. [PMID: 31190444 DOI: 10.1002/asia.201900640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Indexed: 01/07/2023]
Abstract
Electroorganic synthesis is an environmentally friendly alternative to traditional synthetic methods; however, the application of this strategy is heavily hindered by low product selectivity. Metal-organic frameworks (MOFs) exhibit high selectivity in numerous catalytic reactions; however, poor conductivity heavily limits the application of MOFs in electroorganic synthesis. To realize the electrocatalytic application of MOFs in selective electroorganic synthesis, a practically applicable strategy by suspending ion electrocatalysts in charged MOFs is herein reported. This approach could markedly improve the product selectivity in electroorganic synthesis. In the electrocatalytic oxidative self-coupling of benzylamine experiments, the imine product selectivity is markedly improved from 61.3 to 94.9 %, when the MOF-based electrocatalyst is used instead of the corresponding homogeneous electrocatalyst under the identical conditions. Therefore, this work opens a new route to improve the product selectivity in electroorganic synthesis.
Collapse
Affiliation(s)
- Wei-Wei Guo
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chi Zhang
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ji-Jie Ye
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zi-Kun Liu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kai Chen
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
13
|
Gulcay E, Erucar I. Biocompatible MOFs for Storage and Separation of O2: A Molecular Simulation Study. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b04084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo- and Asymmetric Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
He WL, Zhao M, Wu CD. A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo- and Asymmetric Catalysis. Angew Chem Int Ed Engl 2018; 58:168-172. [DOI: 10.1002/anie.201810294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wei-Long He
- State Key Laboratory of Silicon Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Min Zhao
- State Key Laboratory of Silicon Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| |
Collapse
|
16
|
Dang HV, Le YTN, Tran DTM, Phan ANQ, Phan NTS. Synthesis of Benzo[1,4]thiazines via Ring Expansion of 2-Aminobenzothiazoles with Terminal Alkynes Under Metal–Organic Framework Catalysis. Catal Letters 2018. [DOI: 10.1007/s10562-018-2358-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ma Y, Peng H, Liu J, Wang Y, Hao X, Feng X, Khan SU, Tan H, Li Y. Polyoxometalate-Based Metal-Organic Frameworks for Selective Oxidation of Aryl Alkenes to Aldehydes. Inorg Chem 2018. [PMID: 29533068 DOI: 10.1021/acs.inorgchem.8b00282] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyoxometalates (POMs) show considerable catalytic performance toward the selective oxidation of alkenes to aldehydes, which is commercially valuable for the production of pharmaceuticals, dyes, perfumes, and fine chemicals. However, the low specific surface area of POMs as heterogeneous catalysts and poor recyclability as homogeneous catalysts have hindered their wide application. Dispersing POMs into metal-organic frameworks (MOFs) for the construction of POM-based MOFs (POMOFs) suggests a promising strategy to realize the homogeneity of heterogeneous catalysis. Herein, we report two new POMOFs with chemical formulas of [Co(BBTZ)2][H3BW12O40]·10H2O (1) and [Co3(H2O)6(BBTZ)4][BW12O40]·NO3·4H2O (2) (BBTZ = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene) for the selective oxidation of alkenes to aldehydes. Compound 1 possesses a non-interpenetrated three-dimensional (3D) cds-type open framework with a 3D channel system. Compound 2 displays a 3D polyrotaxane framework with one-dimensional channels along the [100] direction. In the selective oxidation of styrene into benzaldehyde, compound 1 can achieve a 100% conversion in 4 h with 96% selectivity toward benzaldehyde, which is superior to that of compound 2. A series of control experiments reveal that the co-role of [BW12O40]5- and Co2+ active center as well as a more open framework feature co-promote the catalytic property of the POMOFs in this case. This work may suggest a new option for the development of POMOF catalysts in the selective oxidation of alkenes.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Haiyue Peng
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Jianing Liu
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Yonghui Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Xiuli Hao
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China.,School of Chemical and Biological Engineering , Taiyuan University of Science and Technology , Taiyuan 030021 , China
| | - Xiaojia Feng
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China.,College of Science , Shenyang Agricultural University , Shenyang 110866 , China
| | - Shifa Ullah Khan
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| |
Collapse
|