1
|
Hani A, Haikal RR, El-Mehalmey WA, Safwat Y, Alkordi MH. Durable and recyclable MOF@polycaprolactone mixed-matrix membranes with hierarchical porosity for wastewater treatment. NANOSCALE 2023. [PMID: 38018685 DOI: 10.1039/d3nr04044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
With the fast-growing global water crisis, the development of novel technologies for water remediation and reuse is crucial. Industrial wastewater especially contains various toxic pollutants that pose an additional threat to the environment; thus, efficient removal of such contaminants can ensure safe reprocessing of industrial wastewater, thereby alleviating the demand for fresh water. Herein, we describe a novel and efficient approach for preparing porous polycaprolactone (PCL) membranes with a hierarchical architecture via a simple solvent/non-solvent methodology. A mixed-matrix membrane (MMM) was further constructed utilizing an amine-functionalized metal-organic framework as the sorbent filler nanoparticles and PCL as the polymer support matrix (MOF@PCL) for wastewater treatment applications. The MOF@PCL MMM demonstrated homogeneous morphology as well as exceptional performance towards the removal of both cationic (methylene blue, MB) and anionic (methyl orange, MO) organic dyes, where the maximum adsorption capacities reached 309 mg g-1 and 208 mg g-1, respectively. Kinetic and thermodynamic investigations revealed that the adsorption process was endothermic with a fast intraparticle diffusion rate constant. The MOF@PCL MMM also displayed excellent mechanical stability and recyclability, where the removal efficiency was maintained after 10 cycles.
Collapse
Affiliation(s)
- Amal Hani
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Rana R Haikal
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Worood A El-Mehalmey
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Youssef Safwat
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| |
Collapse
|
2
|
In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020760. [PMID: 36677818 PMCID: PMC9860898 DOI: 10.3390/molecules28020760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
In recent years, metal-organic framework (MOF)-based nanofibrous membranes (NFMs) have received extensive attention in the application of water treatment. Hence, it is of great significance to realize a simple and efficient preparation strategy of MOF-based porous NFMs. Herein, we developed a direct in situ formation of MOF/polymer NFMs using an electrospinning method. The porous MOF/polymer NFMs were constructed by interconnecting mesopores in electrospun composite nanofibers using poly(vinylpolypyrrolidone) (PVP) as the sacrificial pore-forming agent. MOF (MIL-88A) particles were formed inside the polyacrylonitrile (PAN)/PVP nanofibers in situ during electrospinning, and the porous MIL-88A/PAN (pMIL-88A/PAN) NFM was obtained after removing PVP by ethanol and water washing. The MOF particles were uniformly distributed throughout the pMIL-88A/PAN NFM, showing a good porous micro-nano morphological structure of the NFM with a surface area of 143.21 m2 g-1, which is conducive to its efficient application in dye adsorption and removal. Specifically, the dye removal efficiencies of the pMIL-88A/PAN NFM for amaranth red, rhodamine B, and acid blue were as high as 99.2, 94.4, and 99.8%, respectively. In addition, the NFM still showed over 80% dye removal efficiencies after five adsorption cycles. The pMIL-88A/PAN NFM also presented high adsorption capacities, fast adsorption kinetics, and high cycling stabilities during the processes of dye adsorption and removal. Overall, this work demonstrates that the in situ electrospun porous MOF/polymer NFMs present promising application potential in water treatment for organic dyestuff removal.
Collapse
|
3
|
Hassan HM, Alhumaimess MS, Kamel MM, Alsohaimi IH, Aljaddua HI, Aldosari OF, Algamdi M, Mohamed RM, El-Aassar M. Electrospinning NH2-MIL-101/PAN nanofiber mats: A promising catalyst with Lewis acidic and basic bifunctional sites for organic transformation reactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Li T, Zhang Z, Liu L, Gao M, Han Z. A stable metal-organic framework nanofibrous membrane as photocatalyst for simultaneous removal of methyl orange and formaldehyde from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Feng X, Luo F, Chen Y, Lin D, Luo Y, Xiao L, Liu X, Sun X, Qian Q, Chen Q. Boosting total oxidation of propane over CeO 2@Co 3O 4 nanofiber catalysts prepared by multifluidic coaxial electrospinning with continuous grain boundary and fast lattice oxygen mobility. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124695. [PMID: 33310339 DOI: 10.1016/j.jhazmat.2020.124695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
A one-dimensional (1D) core-shell of Co-Ce oxide has been prepared by multifluidic coaxial electrospinning method and evaluated for the total oxidation of propane (C3H8). Activity and morphological characterizations show that the CeO2@Co3O4 nanofiber catalyst, of which the core is CeO2 and the shell is Co3O4, exhibits excellent oxidation activity. The exposed Co3O4 grown on the outside of the fibers can rapidly react with C3H8 while CeO2 with high oxygen storage capacity in the inside is conductive to the enhanced oxidation rate. Besides, the continuous grain boundary provides a fast mass transfer channel for lattice oxygen, and rich oxygen vacancies favor the mobility of active oxygen species. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) confirms that the CeO2@Co3O4 catalyst have a faster rate of C3H8 adsorption and better oxidation activity with respect to the counterpart using a single-needle electrospinning method. Moreover, the CeO2@Co3O4 catalyst displays excellent thermal stability, and strong resistance against 5 vol% H2O and 5 vol% CO2 at both 300 and 400 °C. Our strategy can give some new insights into morphological engineering to promote active oxygen mobility via the construction of one-dimensional core-shell of metal oxides for catalytic oxidation of VOCs.
Collapse
Affiliation(s)
- Xiaoshan Feng
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Fenqiang Luo
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Yinye Chen
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Daifeng Lin
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Yongjin Luo
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China.
| | - Liren Xiao
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Xinping Liu
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoli Sun
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Qingrong Qian
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| | - Qinghua Chen
- Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China; Fuqing Branch of Fujian Normal University, Fuqing 350300, China.
| |
Collapse
|
6
|
Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Du Y, Wei S, Tang M, Ye M, Tao H, Qi C, Shao L. Palladium nanoparticles stabilized by chitosan/PAAS nanofibers: A highly stable catalyst for Heck reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University Zhejiang 312000 China
| | - Sailong Wei
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University Zhejiang 312000 China
| | - Minchao Tang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University Zhejiang 312000 China
| | - Miaoting Ye
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University Zhejiang 312000 China
| | - Hongyu Tao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University Zhejiang 312000 China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University Zhejiang 312000 China
| | - Linjun Shao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing University Zhejiang 312000 China
| |
Collapse
|
8
|
Ke K, Wu F, Ren L, Jiao Y, Xing N, Shi L. An efficient catalyst of Cu/MIL-101 modified with CeO2 for the conversion of biomass-derived glycerol with aniline to 3-methylindole. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
9
|
Dou Y, Zhang W, Kaiser A. Electrospinning of Metal-Organic Frameworks for Energy and Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902590. [PMID: 32042570 PMCID: PMC7001619 DOI: 10.1002/advs.201902590] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Indexed: 05/05/2023]
Abstract
Herein, recent developments of metal-organic frameworks (MOFs) structured into nanofibers by electrospinning are summarized, including the fabrication, post-treatment via pyrolysis, properties, and use of the resulting MOF nanofiber architectures. The fabrication and post-treatment of the MOF nanofiber architectures are described systematically by two routes: i) the direct electrospinning of MOF-polymer nanofiber composites, and ii) the surface decoration of nanofiber structures with MOFs. The unique properties and performance of the different types of MOF nanofibers and their derivatives are explained in respect to their use in energy and environmental applications, including air filtration, water treatment, gas storage and separation, electrochemical energy conversion and storage, and heterogeneous catalysis. Finally, challenges with the fabrication of MOF nanofibers, limitations for their use, and trends for future developments are presented.
Collapse
Affiliation(s)
- Yibo Dou
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej, Building 301DK‐2800Kongens LyngbyDenmark
| | - Wenjing Zhang
- Department of Environmental EngineeringTechnical University of DenmarkMiljøvej 113DK‐2800Kongens LyngbyDenmark
| | - Andreas Kaiser
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej, Building 301DK‐2800Kongens LyngbyDenmark
| |
Collapse
|
10
|
Liu M, Cai N, Chan V, Yu F. Development and Applications of MOFs Derivative One-Dimensional Nanofibers via Electrospinning: A Mini-Review. NANOMATERIALS 2019; 9:nano9091306. [PMID: 31547339 PMCID: PMC6781049 DOI: 10.3390/nano9091306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Metal organic frameworks (MOFs) have been exploited for various applications in science and engineering due to the possibility of forming different mesoscopic frameworks and pore structures. To date, further development of MOFs for practical applications in areas such as energy storage and conversion have encountered tremendous challenge owing to the unitary porous structure (almost filled entirely with micropores) and conventional morphology (e.g., sphere, polyhedron, and rod shape). More recently, one-dimensional (1D) MOFs/nanofibers composites emerged as a new molecular system with highly engineered novel structures for tailored applications. In this mini-review, the recent progress in the development of MOFs-based 1D nanofibers via electrospinning will be elaborated. In particular, the promising applications and underlying molecular mechanism of electrospun MOF-derived carbon nanofibers are primarily focused and analyzed here. This review is instrumental in providing certain guiding principles for the preparation and structural analysis of MOFs/electrospun nanofibers (M-NFs) composites and electrospun MOF-derived nanomaterials.
Collapse
Affiliation(s)
- Mingming Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE.
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|