1
|
Yan X, Chen L, Wei H, Liu T, Li K, Li J. Enhancing stability via confining Rh-P species in ZIF-8 for hydroformylation of 1-octene. Dalton Trans 2023; 52:13955-13961. [PMID: 37728511 DOI: 10.1039/d3dt02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The stability of Rh-based heterogeneous catalysts is a key issue in the hydroformylation of olefins. Confinement of active Rh species has been considered an effective strategy to achieve stable catalysts. In this work, a phosphine ligand was successfully confined in ZIF-8 material and coordinated with Rh metal by a reduction procedure to develop an efficient and stable Rh-based catalyst for hydroformylation of 1-octene. The results indicate that the catalyst reduced at 300 °C under H2 atmosphere exhibits better stability than that with NaBH4 as reductant and undoped P catalyst. Various characterization studies demonstrate that the superior performance is due to the strong interaction between Rh metal and P, which inhibits the leaching of active Rh species. This work reveals an effective strategy for the synthesis of highly stable catalysts for use in the hydroformylation reaction.
Collapse
Affiliation(s)
- Xiaorui Yan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Lele Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Haisheng Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Tiantian Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Kairui Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Jing Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
2
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
3
|
Kawamoto T, Kamimura A. Radical Reactions of Vinyl Triflates and its Derivatives. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Recent Advances in Radical Reactions of Vinyl Triflates and Their Derivatives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1765-7383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractVinyl triflates are valuable precursors for vinyl cations and vinyl carbenes and serve as electrophiles in transition-metal-catalyzed cross-coupling reactions. However, the scope of radical reactions involving vinyl triflates has been very limited until recently. In this short review, we summarize the recent development on two categories of radical reactions involving vinyl triflates, i.e., radical trifluoromethylations and radical non-trifluoromethylations of vinyl triflates.1 I ntroduction to Vinyl Triflates2 Earlier Work on Radical Reactions of Vinyl Triflates3 Radical Trifluoromethylations of Vinyl Triflates and Their Derivatives4 Radical Non-Trifluoromethylation of Vinyl Triflates5 Conclusions and Outlook
Collapse
|
5
|
Usui K, Manaka Y, Chun WJ, Motokura K. Rhodium-Iodide Complex on a Catalytically Active SiO 2 Surface for One-Pot Hydrosilylation-CO 2 Cycloaddition. Chemistry 2021; 28:e202104001. [PMID: 34878192 DOI: 10.1002/chem.202104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 11/09/2022]
Abstract
In this study, a novel Rh-iodide complex was synthesized through a surface reaction between an immobilized Rh cyclooctadiene complex and alkylammonium iodide (N+ I- ) on SiO2 . In the presence of ammonium cations, the SiO2 -supported Rh-iodide complex could be effectively used for the one-pot synthesis of various silylcarbonate derivatives starting from epoxy olefins, hydrosilanes, and CO2 . The maximum turnover numbers (TONs) for the hydrosilylation reaction and the CO2 cycloaddition were 7600 (Rh) and 130 (N+ I- ), respectively. The catalyst exhibited much higher performance for hydrosilylation than solely the Rh complex on SiO2 . The mechanism of the Rh-catalyzed hydrosilylation reaction and the local structure of Rh, which is affected by the co-immobilized N+ I- , were investigated by using Rh and I K-edge XAFS and XPS. Analysis of the XAFS profiles indicated the presence of a Rh-I bond. The Rh unit was in its electron-rich state. Curve-fitting analysis of the Rh K-edge EXAFS profiles suggests dissociation of the cycloocta-1,5-diene (COD) ligand from the Rh center. Results from spectroscopic and kinetic analyses revealed that the high activity of the catalyst (during hydrosilylation) could be attributed to a decrease in steric hindrance and the electron-rich state of the Rh. The decrease in the steric hindrance could be attributed to the absence of COD, and the electron-rich state promoted the oxidative addition of Si-H. To the best of our knowledge, this is the first example of a one-pot silylcarbonate synthesis as well as a determination of a novel surface Rh-iodide complex and its catalysis.
Collapse
Affiliation(s)
- Kei Usui
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama, Japan.,Department of Chemistry and Life Science, Yokohama National University, 240-8501, Yokohama, Japan
| | - Yuichi Manaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama, Japan.,Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 963-0298, Fukushima, Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences, International Christian University, 181-8585, Mitaka, Tokyo, Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama, Japan.,Department of Chemistry and Life Science, Yokohama National University, 240-8501, Yokohama, Japan
| |
Collapse
|
6
|
Motokura K, Ding S, Usui K, Kong Y. Enhanced Catalysis Based on the Surface Environment of the Silica-Supported Metal Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Siming Ding
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kei Usui
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuanyuan Kong
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
7
|
Zhao K, Wang H, Wang X, Li T, Dai X, Zhang L, Cui X, Shi F. Confinement of atomically dispersed Rh catalysts within porous monophosphine polymers for regioselective hydroformylation of alkenes. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kawamoto T, Noguchi K, Takata R, Sasaki R, Matsubara H, Kamimura A. Redox-Neutral Tetrafluoroethylation of Aryl Alkynes with 1,1,2,2-Tetrafluoroethane Sulfonic Acid Leading to α-Tetrafluoroethylated Acetophenones. Chemistry 2021; 27:9529-9534. [PMID: 33851767 DOI: 10.1002/chem.202100137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/13/2022]
Abstract
The redox-neutral tetrafluoroethylation of alkynes with 1,1,2,2-tetrafluroroethanesulfonic acid (TFESA) and azobis(isobutyronitrile) (AIBN) proceeds via the formation of vinyl tetrafluoroethanesulfonates followed by a radical tetrafluoroethylation. Experimental and theoretical results support an intermolecular reaction.
Collapse
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Kohki Noguchi
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Ryotaro Takata
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Rio Sasaki
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Hiroshi Matsubara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Akio Kamimura
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
9
|
A Brief Overview of Recent Progress in Porous Silica as Catalyst Supports. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5030075] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Porous silica particles have shown applications in various technological fields including their use as catalyst supports in heterogeneous catalysis. The mesoporous silica particles have ordered porosity, high surface area, and good chemical stability. These interesting structural or textural properties make porous silica an attractive material for use as catalyst supports in various heterogeneous catalysis reactions. The colloidal nature of the porous silica particles is highly useful in catalytic applications as it guarantees better mass transfer properties and uniform distribution of the various metal or metal oxide nanocatalysts in solution. The catalysts show high activity, low degree of metal leaching, and ease in recycling when supported or immobilized on porous silica-based materials. In this overview, we have pointed out the importance of porous silica as catalyst supports. A variety of chemical reactions catalyzed by different catalysts loaded or embedded in porous silica supports are studied. The latest reports from the literature about the use of porous silica-based materials as catalyst supports are listed and analyzed. The new and continued trends are discussed with examples.
Collapse
|
10
|
Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. NANOSCALE 2020; 12:11333-11363. [PMID: 32285073 DOI: 10.1039/d0nr00732c] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of advanced materials for heterogeneous catalytic applications requires fine control over the synthesis and structural parameters of the active site. Mesoporous silica materials have attracted increasing attention to be considered as an important class of nanostructured support materials in heterogeneous catalysis. Their large surface area, well-defined porous architecture and ability to incorporate metal atoms within the mesopores lead them to be a promising support material for designing a variety of different catalysts. In particular, SBA-15 mesoporous silica has its broad applicability in catalysis because of its comparatively thicker walls leading to higher thermal and mechanical stability. In this review article, various strategies to functionalize SBA-15 mesoporous silica have been reviewed with a view to evaluating its efficacy in different catalytic transformation reactions. Special attention has been given to the molecular engineering of the silica surface, within the framework and within the hexagonal mesoporous channels for anchoring metal oxides, single-site species and metal nanoparticles (NPs) serving as catalytically active sites.
Collapse
Affiliation(s)
- Priyanka Verma
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and School of Chemistry, University of Southampton, University Road, Highfield, Southampton, SO17 1 BJ, UK
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Robert Raja
- School of Chemistry, University of Southampton, University Road, Highfield, Southampton, SO17 1 BJ, UK
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
11
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|
12
|
Tummatorn J, Punjajom K, Rodphon W, Ruengsangtongkul S, Chaisan N, Lumyong K, Thongsornkleeb C, Nimnual P, Ruchirawat S. Chemoselective Synthesis of 1,1-Disubstituted Vinyl Triflates from Terminal Alkynes Using TfOH in the Presence of TMSN 3. Org Lett 2019; 21:4694-4697. [PMID: 31184914 DOI: 10.1021/acs.orglett.9b01576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,1-Disubstituted vinyl triflates are synthesized by direct hydrotriflation of terminal alkynes employing a combination of TfOH and TMSN3 in DCM at room temperature. Interestingly, under these conditions, only terminal alkynes were selectively converted to the corresponding vinyl triflates, while internal alkynes were not reacted. A broad range of substrates were successfully converted to the corresponding 1,1-disubstituted vinyl triflates in good to excellent yields even those with internal alkyne moieties present in the molecules.
Collapse
Affiliation(s)
- Jumreang Tummatorn
- Laboratory of Medicinal Chemistry , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand.,Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Kunlayanee Punjajom
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Warabhorn Rodphon
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Sureeporn Ruengsangtongkul
- Laboratory of Medicinal Chemistry , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Nattawadee Chaisan
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Kanyapat Lumyong
- Laboratory of Medicinal Chemistry , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Charnsak Thongsornkleeb
- Laboratory of Organic Synthesis , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand.,Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Phongprapan Nimnual
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand.,Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi, Bangkok 10210 , Thailand
| |
Collapse
|
13
|
Mohammadi Ziarani G, Rohani S, Ziarati A, Badiei A. Applications of SBA-15 supported Pd metal catalysts as nanoreactors in C-C coupling reactions. RSC Adv 2018; 8:41048-41100. [PMID: 35557901 PMCID: PMC9091621 DOI: 10.1039/c8ra09038f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
Nanoreactors are material structures with engineered internal cavities which create exclusive confined nanoscale surroundings for chemical reactions. The cavities of mesoporous silica SBA-15 can be used as nanoreactors for incorporating catalytic species such as metal nanoparticles, complexes etc. Since SBA-15 silica has a neutral framework, organic functional groups and heteroatoms have been embedded by direct or post-synthesis approaches in order to modify their functionality. Palladium is the most used transition metal for C-C bond formations. Because of the great importance of C-C coupling reactions, this review article aims at providing a deep insight into the state of art in the field of the synthesis and the application of mesoporous SBA-15 silica-supported Pd catalysts in C-C coupling transformations. In most cases, synthesis and modification of the catalyst, time and yield of reactions, recyclability and leaching of the Pd species from the SBA-15 support are discussed to reveal the role of SBA-15 in C-C coupling reactions.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575 +98 218041575
| | - Sahar Rohani
- Department of Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575 +98 218041575
| | - Abolfazl Ziarati
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| |
Collapse
|