1
|
Zippilli C, Botta L, Bizzarri BM, Nencioni L, De Angelis M, Protto V, Giorgi G, Baratto MC, Pogni R, Saladino R. Laccase-Catalyzed 1,4-Dioxane-Mediated Synthesis of Belladine N-Oxides with Anti-Influenza A Virus Activity. Int J Mol Sci 2021; 22:1337. [PMID: 33572794 PMCID: PMC7866262 DOI: 10.3390/ijms22031337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Belladine N-oxides active against influenza A virus have been synthetized by a novel laccase-catalyzed 1,4-dioxane-mediated oxidation of aromatic and side-chain modified belladine derivatives. Electron paramagnetic resonance (EPR) analysis confirmed the role of 1,4-dioxane as a co-oxidant. The reaction was chemo-selective, showing a high functional-group compatibility. The novel belladine N-oxides were active against influenza A virus, involving the early stage of the virus replication life cycle.
Collapse
Affiliation(s)
- Claudio Zippilli
- Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy; (C.Z.); (L.B.); (B.M.B.)
| | - Lorenzo Botta
- Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy; (C.Z.); (L.B.); (B.M.B.)
| | - Bruno Mattia Bizzarri
- Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy; (C.Z.); (L.B.); (B.M.B.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (V.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (V.P.)
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (V.P.)
| | - Gianluca Giorgi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.G.); (M.C.B.); (R.P.)
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.G.); (M.C.B.); (R.P.)
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.G.); (M.C.B.); (R.P.)
| | - Raffaele Saladino
- Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy; (C.Z.); (L.B.); (B.M.B.)
| |
Collapse
|
2
|
Zhang J, Li F, Wang R, Tan X, Hagedoorn PL. Dialysis membrane enclosed laccase catalysis combines a controlled conversion rate and recyclability without enzyme immobilization. AMB Express 2020; 10:19. [PMID: 31993852 PMCID: PMC6987272 DOI: 10.1186/s13568-020-0955-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 11/29/2022] Open
Abstract
Laccase is a versatile multicopper oxidase that holds great promise for many biotechnological applications. For such applications, it is essential to explore good biocatalytic systems for high activity and recyclability. The feasibility of membrane enclosed enzymatic catalysis (MEEC) for enzyme recycling with laccase was evaluated. The dialysis membrane enclosed laccase catalysis (DMELC) was tested for the conversion of the non-phenolic model substrate 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS). Trametes versicolor laccase was found to be completely retained by the dialysis membrane during the process. The ABTS total conversion after DMELC reached the same values as the batch reaction of the enzyme in solution. The efficiency of DMELC conversion of ABTS under different process conditions including shaking speed, temperature, ABTS concentration and pH was investigated. The repetitive dialysis minimally affected the activity and the protein content of the enclosed laccase. DMELC retained 70.3 ± 0.8% of its initial conversion after 5 cycles. The usefulness of MEEC extends to other enzymes with the benefit of superior activity of an enzyme in solution and the recyclability which is normally only obtained with immobilized enzymes.![]()
Collapse
|
3
|
Abstract
There is a high number of well characterized, commercially available laccases with different redox potentials and low substrate specificity, which in turn makes them attractive for a vast array of biotechnological applications. Laccases operate as batteries, storing electrons from individual substrate oxidation reactions to reduce molecular oxygen, releasing water as the only by-product. Due to society’s increasing environmental awareness and the global intensification of bio-based economies, the biotechnological industry is also expanding. Enzymes such as laccases are seen as a better alternative for use in the wood, paper, textile, and food industries, and they are being applied as biocatalysts, biosensors, and biofuel cells. Almost 140 years from the first description of laccase, industrial implementations of these enzymes still remain scarce in comparison to their potential, which is mostly due to high production costs and the limited control of the enzymatic reaction side product(s). This review summarizes the laccase applications in the last decade, focusing on the published patents during this period.
Collapse
|
4
|
Chen YJ, Zhang GY, He YH, Guan Z. Aryl C–H amination initiated by laccase-mediated oxidation of 4-phenylurazole. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00968j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mild amination of aryl C–H initiated by laccase-mediated oxidation of 4-phenylurazole is described.
Collapse
Affiliation(s)
- Yu-Jue Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Guo-Yan Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|